default / train_model.py
TravisBoltz's picture
Upload 62 files
b4263ca verified
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, KFold
from sklearn.preprocessing import LabelEncoder, RobustScaler
import logging
from tqdm import tqdm
import os
from typing import Tuple, Dict, List
import json
from datetime import datetime
import torch.nn.functional as F
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
from encoder_utils import DataEncoder # Add this import
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('training.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class MusicRecommenderDataset(Dataset):
"""Custom Dataset for loading music recommendation data with additional features."""
def __init__(self, df: pd.DataFrame, mode: str = 'train', encoders=None, embedding_dims=None):
self.df = df
self.mode = mode
self.embedding_dims = embedding_dims
if encoders is not None:
self.user_encoder = encoders['user_encoder']
self.music_encoder = encoders['music_encoder']
self.artist_encoder = encoders['artist_encoder']
self.genre_encoder = encoders['genre_encoder']
self.scaler = encoders['scaler']
# Handle unknown values for each encoder
def safe_transform(encoder, values, max_index=None, default_value=0):
try:
transformed = encoder.transform(values)
if max_index is not None:
# Clip values to be within embedding range
transformed = np.clip(transformed, 0, max_index - 1)
logger.debug(f"Transformed shape: {transformed.shape}")
return transformed
except Exception as e:
logger.warning(f"Error in transform: {str(e)}")
logger.warning(f"Using default value {default_value} for {len(values)} items")
return np.array([default_value] * len(values))
# Transform with dimension limits
max_dims = embedding_dims if embedding_dims else {}
self.users = safe_transform(self.user_encoder, df['user_id'].values,
max_index=max_dims.get('num_users', None))
self.music = safe_transform(self.music_encoder, df['music_id'].values,
max_index=max_dims.get('num_music', None))
self.artists = safe_transform(self.artist_encoder, df['artist_id'].values,
max_index=max_dims.get('num_artists', None))
self.genres = safe_transform(self.genre_encoder, df['main_genre'].values,
max_index=max_dims.get('num_genres', None))
numerical_features = [
'age', 'duration', 'acousticness', 'key', 'mode', 'speechiness',
'instrumentalness', 'liveness', 'tempo', 'time_signature',
'energy_loudness', 'dance_valence'
]
# Handle numerical features
try:
self.numerical_features = self.scaler.transform(df[numerical_features].values)
except KeyError as e:
logger.warning(f"Missing numerical features: {str(e)}")
self.numerical_features = np.zeros((len(df), len(numerical_features)))
# Fix this part - Currently using numerical_features[11] which isn't playcount
# Instead, use the actual playcount column
self.playcount = df['playcount'].values # Add this line
else:
raise ValueError("Encoders must be provided")
# Binary features
self.explicit = df['explicit'].astype(int).values
self.gender = (df['gender'] == 'M').astype(int).values
self.num_users = len(self.user_encoder.classes_)
self.num_music = len(self.music_encoder.classes_)
self.num_artists = len(self.artist_encoder.classes_)
self.num_genres = len(self.genre_encoder.classes_)
self.num_numerical = len(numerical_features)
def __len__(self) -> int:
return len(self.users)
def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
return {
'user_id': torch.tensor(self.users[idx], dtype=torch.long),
'music_id': torch.tensor(self.music[idx], dtype=torch.long),
'artist_id': torch.tensor(self.artists[idx], dtype=torch.long),
'genre_id': torch.tensor(self.genres[idx], dtype=torch.long),
'numerical_features': torch.tensor(self.numerical_features[idx], dtype=torch.float),
'explicit': torch.tensor(self.explicit[idx], dtype=torch.float),
'gender': torch.tensor(self.gender[idx], dtype=torch.float),
'playcount': torch.tensor(self.playcount[idx], dtype=torch.float) # Fix this line
}
class HybridMusicRecommender(nn.Module):
"""Hybrid Neural Collaborative Filtering model with additional features."""
def __init__(self, num_users: int, num_music: int, num_artists: int,
num_genres: int, num_numerical: int, embedding_dim: int = 64,
layers: List[int] = [256, 128, 64], dropout: float = 0.2):
super(HybridMusicRecommender, self).__init__()
# Embedding layers with proper initialization
self.user_embedding = nn.Embedding(num_users, embedding_dim)
self.music_embedding = nn.Embedding(num_music, embedding_dim)
self.artist_embedding = nn.Embedding(num_artists, embedding_dim)
self.genre_embedding = nn.Embedding(num_genres, embedding_dim)
# Feature processing layers with residual connections
self.numerical_layer = nn.Sequential(
nn.Linear(num_numerical, embedding_dim),
nn.ReLU(),
nn.BatchNorm1d(embedding_dim)
)
self.binary_layer = nn.Sequential(
nn.Linear(2, embedding_dim),
nn.ReLU(),
nn.BatchNorm1d(embedding_dim)
)
# Calculate total input features
total_features = embedding_dim * 6
# MLP layers with residual connections
self.fc_layers = nn.ModuleList()
input_dim = total_features
for layer_size in layers:
self.fc_layers.append(nn.ModuleDict({
'main': nn.Sequential(
nn.Linear(input_dim, layer_size),
nn.ReLU(),
nn.BatchNorm1d(layer_size),
nn.Dropout(dropout)
),
'residual': nn.Linear(input_dim, layer_size) if input_dim != layer_size else None
}))
input_dim = layer_size
self.final_layer = nn.Linear(layers[-1], 1)
# Initialize weights
self._init_weights()
def _init_weights(self):
"""Initialize weights using Kaiming initialization for better gradient flow."""
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, nn.BatchNorm1d):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
def forward(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
# Input validation
required_keys = ['user_id', 'music_id', 'artist_id', 'genre_id', 'numerical_features', 'explicit', 'gender']
if not all(key in batch for key in required_keys):
raise ValueError(f"Missing required keys in batch. Required: {required_keys}")
# Get embeddings
user_emb = self.user_embedding(batch['user_id'])
music_emb = self.music_embedding(batch['music_id'])
artist_emb = self.artist_embedding(batch['artist_id'])
genre_emb = self.genre_embedding(batch['genre_id'])
# Process numerical and binary features
numerical_features = self.numerical_layer(batch['numerical_features'])
binary_features = self.binary_layer(
torch.stack([batch['explicit'], batch['gender']], dim=1)
)
# Combine all features
x = torch.cat([
user_emb, music_emb, artist_emb, genre_emb,
numerical_features, binary_features
], dim=1)
# Pass through MLP layers with residual connections
for layer in self.fc_layers:
identity = x
x = layer['main'](x)
if layer['residual'] is not None:
x = x + layer['residual'](identity)
x = F.relu(x)
return self.final_layer(x).squeeze()
def calculate_ndcg(predictions: torch.Tensor, targets: torch.Tensor, k: int = 10) -> float:
"""
Calculate NDCG@K for rating predictions.
For rating predictions, we consider higher predicted ratings as more relevant.
"""
# Ensure inputs are on the same device
device = predictions.device
predictions = predictions.view(-1) # Flatten predictions
targets = targets.view(-1) # Flatten targets
# Sort predictions descending to get top K items
_, indices = torch.sort(predictions, descending=True)
indices = indices[:k] # Get top K indices
# Get corresponding target values
pred_sorted = predictions[indices]
target_sorted = targets[indices]
# Calculate DCG
pos = torch.arange(1, len(indices) + 1, device=device, dtype=torch.float32)
dcg = (target_sorted / torch.log2(pos + 1)).sum()
# Calculate IDCG
ideal_target, _ = torch.sort(targets, descending=True)
ideal_target = ideal_target[:k]
idcg = (ideal_target / torch.log2(pos + 1)).sum()
# Calculate NDCG, handling division by zero
ndcg = dcg / (idcg + 1e-8) # Add small epsilon to avoid division by zero
return ndcg.item()
class Trainer:
"""Trainer class for the hybrid music recommender model."""
def __init__(self, model: nn.Module, train_loader: DataLoader,
val_loader: DataLoader, config: Dict, encoders):
self.model = model
self.train_loader = train_loader
self.val_loader = val_loader
self.config = config
self.encoders = encoders
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Training on device: {self.device}")
if torch.cuda.is_available():
logger.info(f"CUDA Device: {torch.cuda.get_device_name(0)}")
logger.info(f"CUDA Memory Allocated: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB")
self.model = self.model.to(self.device)
self.criterion = nn.MSELoss()
self.optimizer = optim.Adam(
model.parameters(),
lr=config['learning_rate'],
weight_decay=config['weight_decay']
)
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='min', patience=5, factor=0.5, verbose=True
)
# Early stopping configuration
self.early_stopping_patience = config.get('early_stopping_patience', 10)
self.best_val_loss = float('inf')
self.patience_counter = 0
# Gradient clipping
self.max_grad_norm = config.get('max_grad_norm', 1.0)
# Create directories for metrics and checkpoints
os.makedirs('metrics', exist_ok=True)
os.makedirs('checkpoints', exist_ok=True)
self.metrics_file = os.path.join('metrics', f'training_metrics_{datetime.now().strftime("%Y%m%d_%H%M%S")}.json')
self.metrics_history = {
'train_loss': [], 'train_rmse': [], 'train_mae': [], 'train_ndcg': [],
'val_loss': [], 'val_rmse': [], 'val_mae': [], 'val_ndcg': [],
'lr': []
}
# Add L1 regularization
self.l1_lambda = config.get('l1_lambda', 1e-5)
def calculate_l1_loss(self, model):
"""Calculate L1 regularization loss."""
l1_loss = 0
for param in model.parameters():
l1_loss += torch.sum(torch.abs(param))
return self.l1_lambda * l1_loss
def calculate_metrics(self, predictions: torch.Tensor, targets: torch.Tensor) -> Dict[str, float]:
"""Calculate training metrics."""
# Convert tensors to numpy for sklearn metrics
predictions = predictions.cpu().numpy()
targets = targets.cpu().numpy()
# Calculate basic metrics
mse = mean_squared_error(targets, predictions)
rmse = math.sqrt(mse)
mae = mean_absolute_error(targets)
# Calculate NDCG using tensor inputs
ndcg = calculate_ndcg(
torch.tensor(predictions, device=self.device),
torch.tensor(targets, device=self.device),
k=10
)
return {
'loss': mse,
'rmse': rmse,
'mae': mae,
'ndcg': ndcg
}
def train_epoch(self) -> Dict[str, float]:
"""Train the model for one epoch."""
self.model.train()
total_metrics = {'loss': 0.0, 'rmse': 0.0, 'mae': 0.0, 'ndcg': 0.0}
num_batches = len(self.train_loader)
for batch in tqdm(self.train_loader, desc='Training'):
batch = {k: v.to(self.device) for k, v in batch.items()}
self.optimizer.zero_grad()
predictions = self.model(batch)
# Add L1 regularization to loss
loss = self.criterion(predictions, batch['playcount'])
l1_loss = self.calculate_l1_loss(self.model)
total_loss = loss + l1_loss
total_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
# Calculate metrics
batch_metrics = self.calculate_metrics(predictions.detach(), batch['playcount'])
for k, v in batch_metrics.items():
total_metrics[k] += v
# Average metrics
avg_metrics = {k: v / num_batches for k, v in total_metrics.items()}
return avg_metrics
def validate(self) -> Dict[str, float]:
"""Validate the model."""
self.model.eval()
total_metrics = {'loss': 0.0, 'rmse': 0.0, 'mae': 0.0, 'ndcg': 0.0}
num_batches = len(self.val_loader)
with torch.no_grad():
for batch in tqdm(self.val_loader, desc='Validating'):
batch = {k: v.to(self.device) for k, v in batch.items()}
predictions = self.model(batch)
# Calculate metrics
batch_metrics = self.calculate_metrics(predictions, batch['playcount'])
for k, v in batch_metrics.items():
total_metrics[k] += v
# Average metrics
avg_metrics = {k: v / num_batches for k, v in total_metrics.items()}
return avg_metrics
def save_checkpoint(self, epoch: int, metrics: Dict[str, float], is_best: bool = False):
"""Save model checkpoint."""
checkpoint = {
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'metrics': metrics,
'config': self.config,
'encoders': self.encoders
}
# Create directories if they don't exist
os.makedirs('models', exist_ok=True)
os.makedirs('checkpoints', exist_ok=True)
# Save latest checkpoint
checkpoint_path = os.path.join('checkpoints', 'latest_checkpoint.pt')
torch.save(checkpoint, checkpoint_path)
# Save best model if current model is best
if is_best:
best_model_path = os.path.join('checkpoints', 'best_model.pth')
torch.save(checkpoint, best_model_path)
logger.info(f"Saved best model to {best_model_path}")
def train(self, num_epochs: int):
"""Train the model for specified number of epochs."""
for epoch in range(num_epochs):
logger.info(f"Epoch {epoch+1}/{num_epochs}")
# Training
train_metrics = self.train_epoch()
logger.info(f"Training metrics: {train_metrics}")
# Validation
val_metrics = self.validate()
logger.info(f"Validation metrics: {val_metrics}")
# Update learning rate
self.scheduler.step(val_metrics['loss'])
# Update metrics history
current_lr = float(self.optimizer.param_groups[0]['lr']) # Convert to Python float
self.metrics_history['train_loss'].append(float(train_metrics['loss']))
self.metrics_history['train_rmse'].append(float(train_metrics['rmse']))
self.metrics_history['train_mae'].append(float(train_metrics['mae']))
self.metrics_history['train_ndcg'].append(float(train_metrics['ndcg']))
self.metrics_history['val_loss'].append(float(val_metrics['loss']))
self.metrics_history['val_rmse'].append(float(val_metrics['rmse']))
self.metrics_history['val_mae'].append(float(val_metrics['mae']))
self.metrics_history['val_ndcg'].append(float(val_metrics['ndcg']))
self.metrics_history['lr'].append(current_lr)
# Save metrics
with open(self.metrics_file, 'w') as f:
json.dump(self.metrics_history, f, indent=4)
# Check if current model is best
is_best = val_metrics['loss'] < self.best_val_loss
if is_best:
self.best_val_loss = val_metrics['loss']
self.patience_counter = 0
else:
self.patience_counter += 1
# Save checkpoint
self.save_checkpoint(epoch, val_metrics, is_best)
# Early stopping
if self.patience_counter >= self.early_stopping_patience:
logger.info(f"Early stopping triggered after {epoch+1} epochs")
break
logger.info("-" * 50)
def cross_validate(data: pd.DataFrame, config: Dict, n_splits: int = 5):
"""Perform k-fold cross-validation."""
kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
fold_metrics = []
best_model_state = None
best_val_score = float('inf')
# Print CUDA availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {device}")
if torch.cuda.is_available():
logger.info(f"CUDA Device: {torch.cuda.get_device_name(0)}")
# Initialize encoders once on full dataset
encoder = DataEncoder()
encoder.fit(data)
encoders = encoder.get_encoders()
for fold, (train_idx, val_idx) in enumerate(kf.split(data)):
logger.info(f"Training fold {fold + 1}/{n_splits}")
# Create datasets for this fold
train_data = data.iloc[train_idx]
val_data = data.iloc[val_idx]
# Use the same encoders for both train and validation
train_dataset = MusicRecommenderDataset(train_data, encoders=encoders)
val_dataset = MusicRecommenderDataset(val_data, encoders=encoders)
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=config['batch_size'])
# Initialize model with dimensions from the common encoder
model = HybridMusicRecommender(
num_users=len(encoders['user_encoder'].classes_),
num_music=len(encoders['music_encoder'].classes_),
num_artists=len(encoders['artist_encoder'].classes_),
num_genres=len(encoders['genre_encoder'].classes_),
num_numerical=12,
embedding_dim=config['embedding_dim'],
layers=config['hidden_layers'],
dropout=config['dropout']
)
# Train model
trainer = Trainer(model, train_loader, val_loader, config, encoders)
trainer.train(config['epochs'])
# Get final validation metrics
val_metrics = trainer.validate()
fold_metrics.append(trainer.metrics_history)
# Update best model if this fold performed better
if val_metrics['loss'] < best_val_score:
best_val_score = val_metrics['loss']
best_model_state = {
'model_state_dict': model.state_dict(),
'config': config,
'encoders': encoders,
'fold': fold + 1,
'metrics': val_metrics
}
logger.info(f"New best model from fold {fold + 1}")
# Save the best model across all folds
if best_model_state is not None:
best_model_path = os.path.join('checkpoints', 'best_model_cv.pth')
os.makedirs('checkpoints', exist_ok=True)
torch.save(best_model_state, best_model_path)
logger.info(f"Saved best model from fold {best_model_state['fold']} to {best_model_path}")
return fold_metrics
def main():
# Configuration
config = {
'learning_rate': 0.001,
'weight_decay': 1e-5,
'epochs': 20,
'batch_size': 32,
'embedding_dim': 64,
'model_dir': 'models',
'hidden_layers': [256, 128, 64],
'dropout': 0.3,
'early_stopping_patience': 2,
'max_grad_norm': 1.0,
'l1_lambda': 1e-5, # L1 regularization strength
'n_splits': 5, # Number of cross-validation folds
}
# Save configuration
os.makedirs('config', exist_ok=True)
with open('config/model_config.json', 'w') as f:
json.dump(config, f, indent=4)
# Load data and encoders
train_data = pd.read_csv('../../data/train_data.csv')
# Don't load existing encoders for cross-validation
# Instead, let cross_validate create new encoders on the full dataset
# Perform cross-validation
fold_metrics = cross_validate(train_data, config)
# Average metrics across folds
avg_metrics = {
'val_rmse': np.mean([m['val_rmse'][-1] for m in fold_metrics]),
'val_ndcg': np.mean([m['val_ndcg'][-1] for m in fold_metrics])
}
logger.info(f"Cross-validation results:")
for metric, value in avg_metrics.items():
logger.info(f"{metric}: {value:.4f}")
if __name__ == "__main__":
main()