Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import tiktoken | |
enc = tiktoken.get_encoding("gpt2") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_model, n_heads): | |
super().__init__() | |
self.d_model = d_model | |
self.n_heads = n_heads | |
assert d_model % n_heads == 0, "d_model must be divisible by n_heads" | |
self.d_key = self.d_model // self.n_heads | |
self.wq = nn.Linear(d_model, d_model) | |
self.wk = nn.Linear(d_model, d_model) | |
self.wv = nn.Linear(d_model, d_model) | |
self.wo = nn.Linear(d_model, d_model) | |
def forward(self, ins, mask=None): | |
batch_size, seq_len, d_model = ins.size() | |
Q = self.wq(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2) | |
K = self.wk(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2) | |
V = self.wv(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2) | |
#scaled_dot_product = (Q @ K.transpose(2, 3)) / (self.d_model ** 0.5) | |
#if mask is not None: | |
#scaled_dot_product += mask | |
attn_scores = F.scaled_dot_product_attention(Q, K, V, is_causal=True, attn_mask=mask) | |
#F.softmax(scaled_dot_product, dim=-1) @ V | |
attn_scores = attn_scores.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model) | |
return self.wo(attn_scores) | |
class MLP(nn.Module): | |
def __init__(self, in_size, hidden_size, out_size): | |
super().__init__() | |
self.l1 = nn.Linear(in_size, hidden_size) | |
self.l2 = nn.Linear(hidden_size, out_size) | |
self.gelu = nn.GELU() | |
def forward(self, ins): | |
acts = self.gelu(self.l1(ins)) | |
return self.l2(acts) | |
class DecoderBlock(nn.Module): | |
def __init__(self, vocab_size, d_model, n_heads, dropout=0.1): | |
super().__init__() | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.dropout = nn.Dropout(dropout) | |
self.MHA = MultiHeadAttention(d_model, n_heads) | |
self.MLP = MLP(d_model, 4*d_model, d_model) | |
self.layernorm1 = nn.LayerNorm(d_model) | |
self.layernorm2 = nn.LayerNorm(d_model) | |
def forward(self, ins, mask=None): | |
ins = ins + self.MHA(self.layernorm1(ins), mask=mask) | |
ins = ins + self.MLP(self.layernorm2(ins)) | |
return self.dropout(ins) | |
class GPT(nn.Module): | |
def __init__(self, vocab_size, block_size, n_layers=2, n_heads=4, d_model=64, dropout=0.1): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.block_size = block_size | |
self.n_layers = n_layers | |
self.n_heads = n_heads | |
self.d_model = d_model | |
self.dropout = dropout | |
self.token_embedding = nn.Embedding(vocab_size, d_model) | |
self.position_embedding = nn.Embedding(block_size, d_model) | |
self.decoder_stack = nn.ModuleList([ | |
DecoderBlock(vocab_size, d_model, n_heads, dropout=dropout) for _ in range(n_layers) | |
]) | |
self.final_ln = nn.LayerNorm(d_model) | |
self.output_proj = nn.Linear(d_model, vocab_size, bias=False) | |
#self.token_embedding.weight = self.output_proj.weight | |
def forward(self, ins, targets=None): | |
B, T = ins.size() | |
x = self.token_embedding(ins.to(device)) | |
input_indices = torch.arange(T).to(device) | |
x += self.position_embedding(input_indices) | |
#look_ahead_mask = torch.triu( | |
#torch.ones((T, T)), diagonal=1 | |
#) | |
#look_ahead_mask.masked_fill_(look_ahead_mask == 1, float("-inf")) | |
#look_ahead_mask = look_ahead_mask.to(device) | |
for decoder in self.decoder_stack: | |
x = decoder(x) #mask=look_ahead_mask | |
x = self.final_ln(x) | |
logits = self.output_proj(x) | |
loss = None | |
if targets is not None: | |
targets = targets.to(device) | |
loss = F.cross_entropy(logits.view(-1, self.vocab_size), targets.view(-1)) | |
return logits, loss | |
def load_compiled_model_state_dict(model, state_dict_path): | |
# Load the state dict | |
state_dict = torch.load(state_dict_path, map_location=torch.device('cpu')) | |
# Create a new state dict without the '_orig_mod.' prefix | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
if key.startswith('_orig_mod.'): | |
new_key = key[len('_orig_mod.'):] | |
new_state_dict[new_key] = value | |
else: | |
new_state_dict[key] = value | |
# Load the new state dict into the model | |
model.load_state_dict(new_state_dict) | |
return model | |
block_size = 512 | |
n_layers = 12 | |
n_heads = 12 | |
d_model = 768 | |
torch.set_float32_matmul_precision('medium') | |
my_GPT = GPT(enc.n_vocab, block_size, n_layers, n_heads, d_model, dropout=0.1) #enc.n_vocab | |
my_GPT = my_GPT.to(device) | |
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead') | |
my_GPT = load_compiled_model_state_dict(my_GPT, 'latest_model_finetune.pth') | |
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu'))) | |
my_GPT.eval() | |
my_GPT_code = GPT(enc.n_vocab, 256, n_layers, n_heads, d_model, dropout=0.0) #enc.n_vocab | |
my_GPT_code = my_GPT_code.to(device) | |
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead') | |
my_GPT_code = load_compiled_model_state_dict(my_GPT_code, 'mike-code-15k.pth') | |
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu'))) | |
my_GPT_code.eval() | |
my_GPT_code_600 = GPT(enc.n_vocab, 256, 16, n_heads, 768 * 2, dropout=0.0) #enc.n_vocab | |
my_GPT_code_600 = my_GPT_code_600.to(device) | |
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead') | |
my_GPT_code_600 = load_compiled_model_state_dict(my_GPT_code_600, 'mike-code-600m.pth') | |
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu'))) | |
my_GPT_code_600.eval() | |
models = { | |
"mike-chat": my_GPT, | |
"mike-code": my_GPT_code, | |
"mike-code-600m": my_GPT_code_600 | |
} | |
eot = enc._special_tokens['<|endoftext|>'] | |
def get_response(in_text, top_k=50, temperature=1, model="mike-chat"): | |
with torch.inference_mode(): | |
prompt = "USER: " + in_text + "\nASSISTANT: " | |
input_tokens = enc.encode(prompt) | |
output_tokens = enc.encode(prompt) | |
for x in range(models[model].block_size): | |
if len(input_tokens) > models[model].block_size: | |
input_tokens = input_tokens[1:] | |
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device) | |
logits, loss = models[model](context_tensor) | |
logits = logits[:, -1, :] / temperature | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None] | |
logits[indices_to_remove] = float("-inf") | |
probs = F.softmax(logits, dim=-1) | |
result = torch.multinomial(probs, num_samples=1).item() | |
if result == eot: | |
break | |
input_tokens.append(result) | |
output_tokens.append(result) | |
yield enc.decode(output_tokens) | |
yield enc.decode(output_tokens) |