File size: 6,827 Bytes
a5c66e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c66e0
 
 
 
 
2769ffd
a5c66e0
 
 
2769ffd
 
 
a5c66e0
 
91f17ff
70d8b6d
 
 
 
 
 
91f17ff
 
 
 
 
 
70d8b6d
 
91f17ff
 
70d8b6d
 
a5c66e0
 
70d8b6d
8de17f5
 
 
 
ad590a4
 
8de17f5
 
 
70d8b6d
8de17f5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import torch.nn.functional as F

import tiktoken
enc = tiktoken.get_encoding("gpt2")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class MultiHeadAttention(nn.Module):
  def __init__(self, d_model, n_heads):
    super().__init__()
    self.d_model = d_model
    self.n_heads = n_heads
    assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
    self.d_key = self.d_model // self.n_heads

    self.wq = nn.Linear(d_model, d_model)
    self.wk = nn.Linear(d_model, d_model)
    self.wv = nn.Linear(d_model, d_model)

    self.wo = nn.Linear(d_model, d_model)
  def forward(self, ins, mask=None):
    batch_size, seq_len, d_model = ins.size()
    Q = self.wq(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
    K = self.wk(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
    V = self.wv(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)

    #scaled_dot_product = (Q @ K.transpose(2, 3)) / (self.d_model ** 0.5)

    #if mask is not None:
      #scaled_dot_product += mask

    attn_scores = F.scaled_dot_product_attention(Q, K, V, is_causal=True, attn_mask=mask)
    #F.softmax(scaled_dot_product, dim=-1) @ V
    attn_scores = attn_scores.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
    return self.wo(attn_scores)

class MLP(nn.Module):
  def __init__(self, in_size, hidden_size, out_size):
    super().__init__()
    self.l1 = nn.Linear(in_size, hidden_size)
    self.l2 = nn.Linear(hidden_size, out_size)
    self.gelu = nn.GELU()
  def forward(self, ins):
    acts = self.gelu(self.l1(ins))
    return self.l2(acts)

class DecoderBlock(nn.Module):
  def __init__(self, vocab_size, d_model, n_heads, dropout=0.1):
    super().__init__()
    self.d_model = d_model
    self.n_heads = n_heads
    self.dropout = nn.Dropout(dropout)
    self.MHA = MultiHeadAttention(d_model, n_heads)
    self.MLP = MLP(d_model, 4*d_model, d_model)
    self.layernorm1 = nn.LayerNorm(d_model)
    self.layernorm2 = nn.LayerNorm(d_model)
  def forward(self, ins, mask=None):
    ins = ins + self.MHA(self.layernorm1(ins), mask=mask)
    ins = ins + self.MLP(self.layernorm2(ins))
    return self.dropout(ins)

class GPT(nn.Module):
  def __init__(self, vocab_size, block_size, n_layers=2, n_heads=4, d_model=64, dropout=0.1):
    super().__init__()
    self.vocab_size = vocab_size
    self.block_size = block_size
    self.n_layers = n_layers
    self.n_heads = n_heads
    self.d_model = d_model
    self.dropout = dropout

    self.token_embedding = nn.Embedding(vocab_size, d_model)
    self.position_embedding = nn.Embedding(block_size, d_model)
    self.decoder_stack = nn.ModuleList([
        DecoderBlock(vocab_size, d_model, n_heads, dropout=dropout) for _ in range(n_layers)
    ])
    self.final_ln = nn.LayerNorm(d_model)
    self.output_proj = nn.Linear(d_model, vocab_size, bias=False)
    #self.token_embedding.weight = self.output_proj.weight 
  def forward(self, ins, targets=None):
    B, T = ins.size()

    x = self.token_embedding(ins.to(device))
    input_indices = torch.arange(T).to(device)
    x += self.position_embedding(input_indices)

    #look_ahead_mask = torch.triu(
        #torch.ones((T, T)), diagonal=1
    #)
    #look_ahead_mask.masked_fill_(look_ahead_mask == 1, float("-inf"))
    #look_ahead_mask = look_ahead_mask.to(device)

    for decoder in self.decoder_stack:
      x = decoder(x) #mask=look_ahead_mask
    x = self.final_ln(x)
    logits = self.output_proj(x)
    loss = None
    if targets is not None:
      targets = targets.to(device)
      loss = F.cross_entropy(logits.view(-1, self.vocab_size), targets.view(-1))
    return logits, loss


def load_compiled_model_state_dict(model, state_dict_path):
    # Load the state dict
    state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))
    
    # Create a new state dict without the '_orig_mod.' prefix
    new_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith('_orig_mod.'):
            new_key = key[len('_orig_mod.'):]
            new_state_dict[new_key] = value
        else:
            new_state_dict[key] = value
    
    # Load the new state dict into the model
    model.load_state_dict(new_state_dict)
    return model

block_size = 512
n_layers = 12
n_heads = 12
d_model = 768

torch.set_float32_matmul_precision('medium')

my_GPT = GPT(enc.n_vocab, block_size, n_layers, n_heads, d_model, dropout=0.1) #enc.n_vocab
my_GPT = my_GPT.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT = load_compiled_model_state_dict(my_GPT, 'latest_model_finetune.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT.eval()

my_GPT_code = GPT(enc.n_vocab, 256, n_layers, n_heads, d_model, dropout=0.0) #enc.n_vocab
my_GPT_code = my_GPT_code.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT_code = load_compiled_model_state_dict(my_GPT_code, 'mike-code-15k.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT_code.eval()

my_GPT_code_600 = GPT(enc.n_vocab, 256, 16, n_heads, 768 * 2, dropout=0.0) #enc.n_vocab
my_GPT_code_600 = my_GPT_code_600.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT_code_600 = load_compiled_model_state_dict(my_GPT_code_600, 'mike-code-600m.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT_code_600.eval()
models = {
   "mike-chat": my_GPT,
   "mike-code": my_GPT_code,
   "mike-code-600m": my_GPT_code_600
}

eot = enc._special_tokens['<|endoftext|>']

def get_response(in_text, top_k=50, temperature=1, model="mike-chat"):
  with torch.inference_mode():
    prompt = "USER: " + in_text + "\nASSISTANT: "
    input_tokens = enc.encode(prompt)
    output_tokens = enc.encode(prompt)
    for x in range(models[model].block_size):
      if len(input_tokens) > models[model].block_size:
        input_tokens = input_tokens[1:]
      context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)

      logits, loss = models[model](context_tensor)
      logits = logits[:, -1, :] / temperature
      if top_k > 0:
            # Remove all tokens with a probability less than the last token of the top-k
            indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None]
            logits[indices_to_remove] = float("-inf")
      probs = F.softmax(logits, dim=-1)
      result = torch.multinomial(probs, num_samples=1).item()
      if result == eot:
        break
      input_tokens.append(result)
      output_tokens.append(result)
      yield enc.decode(output_tokens)
      
    yield enc.decode(output_tokens)