Spaces:
Sleeping
Sleeping
File size: 6,827 Bytes
a5c66e0 2769ffd a5c66e0 2769ffd a5c66e0 2769ffd a5c66e0 91f17ff 70d8b6d 91f17ff 70d8b6d 91f17ff 70d8b6d a5c66e0 70d8b6d 8de17f5 ad590a4 8de17f5 70d8b6d 8de17f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import tiktoken
enc = tiktoken.get_encoding("gpt2")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
self.d_key = self.d_model // self.n_heads
self.wq = nn.Linear(d_model, d_model)
self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
self.wo = nn.Linear(d_model, d_model)
def forward(self, ins, mask=None):
batch_size, seq_len, d_model = ins.size()
Q = self.wq(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
K = self.wk(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
V = self.wv(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
#scaled_dot_product = (Q @ K.transpose(2, 3)) / (self.d_model ** 0.5)
#if mask is not None:
#scaled_dot_product += mask
attn_scores = F.scaled_dot_product_attention(Q, K, V, is_causal=True, attn_mask=mask)
#F.softmax(scaled_dot_product, dim=-1) @ V
attn_scores = attn_scores.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
return self.wo(attn_scores)
class MLP(nn.Module):
def __init__(self, in_size, hidden_size, out_size):
super().__init__()
self.l1 = nn.Linear(in_size, hidden_size)
self.l2 = nn.Linear(hidden_size, out_size)
self.gelu = nn.GELU()
def forward(self, ins):
acts = self.gelu(self.l1(ins))
return self.l2(acts)
class DecoderBlock(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, dropout=0.1):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.dropout = nn.Dropout(dropout)
self.MHA = MultiHeadAttention(d_model, n_heads)
self.MLP = MLP(d_model, 4*d_model, d_model)
self.layernorm1 = nn.LayerNorm(d_model)
self.layernorm2 = nn.LayerNorm(d_model)
def forward(self, ins, mask=None):
ins = ins + self.MHA(self.layernorm1(ins), mask=mask)
ins = ins + self.MLP(self.layernorm2(ins))
return self.dropout(ins)
class GPT(nn.Module):
def __init__(self, vocab_size, block_size, n_layers=2, n_heads=4, d_model=64, dropout=0.1):
super().__init__()
self.vocab_size = vocab_size
self.block_size = block_size
self.n_layers = n_layers
self.n_heads = n_heads
self.d_model = d_model
self.dropout = dropout
self.token_embedding = nn.Embedding(vocab_size, d_model)
self.position_embedding = nn.Embedding(block_size, d_model)
self.decoder_stack = nn.ModuleList([
DecoderBlock(vocab_size, d_model, n_heads, dropout=dropout) for _ in range(n_layers)
])
self.final_ln = nn.LayerNorm(d_model)
self.output_proj = nn.Linear(d_model, vocab_size, bias=False)
#self.token_embedding.weight = self.output_proj.weight
def forward(self, ins, targets=None):
B, T = ins.size()
x = self.token_embedding(ins.to(device))
input_indices = torch.arange(T).to(device)
x += self.position_embedding(input_indices)
#look_ahead_mask = torch.triu(
#torch.ones((T, T)), diagonal=1
#)
#look_ahead_mask.masked_fill_(look_ahead_mask == 1, float("-inf"))
#look_ahead_mask = look_ahead_mask.to(device)
for decoder in self.decoder_stack:
x = decoder(x) #mask=look_ahead_mask
x = self.final_ln(x)
logits = self.output_proj(x)
loss = None
if targets is not None:
targets = targets.to(device)
loss = F.cross_entropy(logits.view(-1, self.vocab_size), targets.view(-1))
return logits, loss
def load_compiled_model_state_dict(model, state_dict_path):
# Load the state dict
state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))
# Create a new state dict without the '_orig_mod.' prefix
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith('_orig_mod.'):
new_key = key[len('_orig_mod.'):]
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
# Load the new state dict into the model
model.load_state_dict(new_state_dict)
return model
block_size = 512
n_layers = 12
n_heads = 12
d_model = 768
torch.set_float32_matmul_precision('medium')
my_GPT = GPT(enc.n_vocab, block_size, n_layers, n_heads, d_model, dropout=0.1) #enc.n_vocab
my_GPT = my_GPT.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT = load_compiled_model_state_dict(my_GPT, 'latest_model_finetune.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT.eval()
my_GPT_code = GPT(enc.n_vocab, 256, n_layers, n_heads, d_model, dropout=0.0) #enc.n_vocab
my_GPT_code = my_GPT_code.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT_code = load_compiled_model_state_dict(my_GPT_code, 'mike-code-15k.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT_code.eval()
my_GPT_code_600 = GPT(enc.n_vocab, 256, 16, n_heads, 768 * 2, dropout=0.0) #enc.n_vocab
my_GPT_code_600 = my_GPT_code_600.to(device)
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
my_GPT_code_600 = load_compiled_model_state_dict(my_GPT_code_600, 'mike-code-600m.pth')
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
my_GPT_code_600.eval()
models = {
"mike-chat": my_GPT,
"mike-code": my_GPT_code,
"mike-code-600m": my_GPT_code_600
}
eot = enc._special_tokens['<|endoftext|>']
def get_response(in_text, top_k=50, temperature=1, model="mike-chat"):
with torch.inference_mode():
prompt = "USER: " + in_text + "\nASSISTANT: "
input_tokens = enc.encode(prompt)
output_tokens = enc.encode(prompt)
for x in range(models[model].block_size):
if len(input_tokens) > models[model].block_size:
input_tokens = input_tokens[1:]
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
logits, loss = models[model](context_tensor)
logits = logits[:, -1, :] / temperature
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None]
logits[indices_to_remove] = float("-inf")
probs = F.softmax(logits, dim=-1)
result = torch.multinomial(probs, num_samples=1).item()
if result == eot:
break
input_tokens.append(result)
output_tokens.append(result)
yield enc.decode(output_tokens)
yield enc.decode(output_tokens) |