File size: 8,790 Bytes
db56516
0e4ea9a
db56516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711eaf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import subprocess
subprocess.check_call(['pip', 'install', 'git+https://github.com/NVIDIA/MinkowskiEngine'])

import MinkowskiEngine as ME
import torch.nn as nn
from MinkowskiEngine.modules.resnet_block import BasicBlock


class ResNetBase(nn.Module):
    BLOCK = None
    LAYERS = ()
    INIT_DIM = 64
    PLANES = (64, 128, 256, 512)

    def __init__(self, in_channels, out_channels, D=3):
        nn.Module.__init__(self)
        self.D = D
        assert self.BLOCK is not None

        self.network_initialization(in_channels, out_channels, D)
        self.weight_initialization()

    def network_initialization(self, in_channels, out_channels, D):

        self.inplanes = self.INIT_DIM
        self.conv1 = nn.Sequential(
            ME.MinkowskiConvolution(
                in_channels, self.inplanes, kernel_size=3, stride=2, dimension=D
            ),
            ME.MinkowskiInstanceNorm(self.inplanes),
            ME.MinkowskiReLU(inplace=True),
            ME.MinkowskiMaxPooling(kernel_size=2, stride=2, dimension=D),
        )

        self.layer1 = self._make_layer(
            self.BLOCK, self.PLANES[0], self.LAYERS[0], stride=2
        )
        self.layer2 = self._make_layer(
            self.BLOCK, self.PLANES[1], self.LAYERS[1], stride=2
        )
        self.layer3 = self._make_layer(
            self.BLOCK, self.PLANES[2], self.LAYERS[2], stride=2
        )
        self.layer4 = self._make_layer(
            self.BLOCK, self.PLANES[3], self.LAYERS[3], stride=2
        )

        self.conv5 = nn.Sequential(
            ME.MinkowskiDropout(),
            ME.MinkowskiConvolution(
                self.inplanes, self.inplanes, kernel_size=3, stride=3, dimension=D
            ),
            ME.MinkowskiInstanceNorm(self.inplanes),
            ME.MinkowskiGELU(),
        )

        self.glob_pool = ME.MinkowskiGlobalMaxPooling()

        self.final = ME.MinkowskiLinear(self.inplanes, out_channels, bias=True)

    def weight_initialization(self):
        for m in self.modules():
            if isinstance(m, ME.MinkowskiConvolution):
                ME.utils.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu")

            if isinstance(m, ME.MinkowskiBatchNorm):
                nn.init.constant_(m.bn.weight, 1)
                nn.init.constant_(m.bn.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, bn_momentum=0.1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                ME.MinkowskiConvolution(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    dimension=self.D,
                ),
                ME.MinkowskiBatchNorm(planes * block.expansion),
            )
        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride=stride,
                dilation=dilation,
                downsample=downsample,
                dimension=self.D,
            )
        )
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(
                    self.inplanes, planes, stride=1, dilation=dilation, dimension=self.D
                )
            )

        return nn.Sequential(*layers)

    def forward(self, x: ME.SparseTensor):
        x = self.conv1(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.conv5(x)
        x = self.glob_pool(x)
        return self.final(x)


class MinkResNet(ResNetBase):
    BLOCK = BasicBlock
    DILATIONS = (1, 1, 1, 1, 1, 1, 1, 1)
    LAYERS = (2, 2, 2, 2, 2, 2, 2, 2)
    PLANES = (32, 64, 128, 256, 256, 128, 96, 96)
    INIT_DIM = 32
    OUT_TENSOR_STRIDE = 1

    # To use the model, must call initialize_coords before forward pass.
    # Once data is processed, call clear to reset the model before calling
    # initialize_coords
    def __init__(self, D=3):
        self.in_channels = 6
        self.out_channels = 1280
        self.embedding_channel = 1024
        ResNetBase.__init__(self, self.in_channels, self.out_channels, D)

    def get_conv_block(self, in_channel, out_channel, kernel_size, stride):
        return nn.Sequential(
            ME.MinkowskiConvolution(
                in_channel,
                out_channel,
                kernel_size=kernel_size,
                stride=stride,
                dimension=self.D,
            ),
            ME.MinkowskiBatchNorm(out_channel),
            ME.MinkowskiLeakyReLU(),
        )
    
    def get_mlp_block(self, in_channel, out_channel):
        return nn.Sequential(
            ME.MinkowskiLinear(in_channel, out_channel, bias=False),
            ME.MinkowskiBatchNorm(out_channel),
            ME.MinkowskiLeakyReLU(),
        )

    def network_initialization(self, in_channels, out_channels, D):
        # Output of the first conv concated to conv6
        self.inplanes = self.INIT_DIM
        self.conv0p1s1 = ME.MinkowskiConvolution(
            in_channels, self.inplanes, kernel_size=5, dimension=D)

        self.bn0 = ME.MinkowskiBatchNorm(self.inplanes)

        self.conv1p1s2 = ME.MinkowskiConvolution(
            self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
        self.bn1 = ME.MinkowskiBatchNorm(self.inplanes)

        self.block1 = self._make_layer(self.BLOCK, self.PLANES[0],
                                       self.LAYERS[0])

        self.conv2p2s2 = ME.MinkowskiConvolution(
            self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
        self.bn2 = ME.MinkowskiBatchNorm(self.inplanes)

        self.block2 = self._make_layer(self.BLOCK, self.PLANES[1],
                                       self.LAYERS[1])

        self.conv3p4s2 = ME.MinkowskiConvolution(
            self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)

        self.bn3 = ME.MinkowskiBatchNorm(self.inplanes)
        self.block3 = self._make_layer(self.BLOCK, self.PLANES[2],
                                       self.LAYERS[2])

        self.conv4p8s2 = ME.MinkowskiConvolution(
            self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
        self.bn4 = ME.MinkowskiBatchNorm(self.inplanes)
        self.block4 = self._make_layer(self.BLOCK, self.PLANES[3],
                                       self.LAYERS[3])

        self.conv5 = nn.Sequential(
            self.get_conv_block(
                self.PLANES[0] + self.PLANES[1] + self.PLANES[2] + self.PLANES[3],
                self.embedding_channel // 2,
                kernel_size=3,
                stride=2,
            ),
            self.get_conv_block(
                self.embedding_channel // 2,
                self.embedding_channel,
                kernel_size=3,
                stride=2,
            ),
        )

        self.relu = ME.MinkowskiReLU(inplace=True)

        self.global_max_pool = ME.MinkowskiGlobalMaxPooling()
        self.global_avg_pool = ME.MinkowskiGlobalAvgPooling()

        self.final = nn.Sequential(
            self.get_mlp_block(self.embedding_channel * 2, 1024),
            ME.MinkowskiDropout(),
            self.get_mlp_block(1024, 1024),
            ME.MinkowskiLinear(1024, out_channels, bias=True),
        )

    def forward(self, xyz, features, device="cuda", quantization_size=0.05):
        xyz[:, 1:] = xyz[:, 1:] / quantization_size
        #print(xyz.dtype, xyz, quantization_size)
        x = ME.TensorField(
            coordinates=xyz,
            features=features,
            device=device,
        )
        
        out = self.conv0p1s1(x.sparse())
        out = self.bn0(out)
        out_p1 = self.relu(out)

        out = self.conv1p1s2(out_p1)
        out = self.bn1(out)
        out = self.relu(out)
        out_b1p2 = self.block1(out)

        out = self.conv2p2s2(out_b1p2)
        out = self.bn2(out)
        out = self.relu(out)
        out_b2p4 = self.block2(out)

        out = self.conv3p4s2(out_b2p4)
        out = self.bn3(out)
        out = self.relu(out)
        out_b3p8 = self.block3(out)

        # tensor_stride=16
        out = self.conv4p8s2(out_b3p8)
        out = self.bn4(out)
        out = self.relu(out)
        out = self.block4(out)


        x1 = out_b1p2.slice(x)
        x2 = out_b2p4.slice(x)
        x3 = out_b3p8.slice(x)
        x4 = out.slice(x)

        x = ME.cat(x1, x2, x3, x4)

        y = self.conv5(x.sparse())
        x1 = self.global_max_pool(y)
        x2 = self.global_avg_pool(y)

        return self.final(ME.cat(x1, x2)).F


class MinkResNet34(MinkResNet):
    LAYERS = (3, 4, 6, 3)