File size: 12,895 Bytes
71bb5e9
 
9145aca
71bb5e9
 
 
 
 
9fe654e
daed59e
 
71bb5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a14dc
 
 
 
 
 
71bb5e9
a8e5fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bb5e9
9fe654e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bb5e9
 
 
26b3975
 
 
 
 
 
 
71bb5e9
9fe654e
 
 
 
88adc91
3779aed
9fe654e
 
b0a14dc
 
 
 
daed59e
4429214
daed59e
 
 
 
 
 
b0a14dc
 
 
 
 
71bb5e9
9fe654e
 
 
d39e5a5
3779aed
9fe654e
 
d39e5a5
 
 
 
 
 
 
 
 
 
26b3975
 
 
9fe654e
 
71bb5e9
9fe654e
71bb5e9
 
9fe654e
71bb5e9
 
 
 
9fe654e
71bb5e9
 
 
104f14f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e5fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bb5e9
a8e5fc3
 
 
 
9fe654e
64fa430
a8e5fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104f14f
a8e5fc3
104f14f
 
a8e5fc3
104f14f
a8e5fc3
104f14f
 
a8e5fc3
 
 
 
 
104f14f
a8e5fc3
 
 
 
 
 
 
 
104f14f
 
a8e5fc3
 
 
 
104f14f
 
a8e5fc3
 
 
 
104f14f
 
a8e5fc3
 
 
 
 
 
 
 
 
 
104f14f
 
a8e5fc3
104f14f
a8e5fc3
104f14f
 
a8e5fc3
104f14f
a8e5fc3
64fa430
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import sys
import threading
import streamlit as st
import numpy
import torch
import openshape
import transformers
from PIL import Image
from huggingface_hub import HfFolder, snapshot_download
from demo_support import retrieval, utils, lvis
from collections import OrderedDict

@st.cache_resource
def load_openclip():
    sys.clip_move_lock = threading.Lock()
    clip_model, clip_prep = transformers.CLIPModel.from_pretrained(
        "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
        low_cpu_mem_usage=True, torch_dtype=half,
        offload_state_dict=True
    ), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
    if torch.cuda.is_available():
        with sys.clip_move_lock:
            clip_model.cuda()
    return clip_model, clip_prep

@st.cache_resource
def load_openshape(name, to_cpu=False):
    pce = openshape.load_pc_encoder(name)
    if to_cpu:
        pce = pce.cpu()
    return pce

def retrieval_filter_expand():
    sim_th = st.sidebar.slider("Similarity Threshold", 0.05, 0.5, 0.1, key='rsimth')
    tag = ""
    face_min = 0
    face_max = 34985808
    anim_min = 0
    anim_max = 563
    tag_n = not bool(tag.strip())
    anim_n = not (anim_min > 0 or anim_max < 563)
    face_n = not (face_min > 0 or face_max < 34985808)
    filter_fn = lambda x: (
        (anim_n or anim_min <= x['anims'] <= anim_max)
        and (face_n or face_min <= x['faces'] <= face_max)
        and (tag_n or tag in x['tags'])
    )
    return sim_th, filter_fn

def retrieval_results(results):
    st.caption("Click the link to view the 3D shape")
    for i in range(len(results) // 4):
        cols = st.columns(4)
        for j in range(4):
            idx = i * 4 + j
            if idx >= len(results):
                continue
            entry = results[idx]
            with cols[j]:
                ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
                st.image(entry['img'])
                # st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
                # st.text(entry['name'])
                quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
                st.markdown(f"[{quote_name}]({ext_link})")



def demo_captioning():
    with st.form("capform"):
        cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')

def demo_pc2img():
    with st.form("sdform"):
        prompt = st.text_input("Prompt (Optional)", key='sdtprompt')

def demo_retrieval():
    with tab_pc:
        with st.form("rpcform"):
            k = st.slider("Number of items to retrieve", 1, 100, 16, key='rpc')
            load_data = utils.input_3d_shape('rpcinput')
            sim_th, filter_fn = retrieval_filter_expand('pc')
            if st.form_submit_button("Retrieve with Point Cloud"):
                prog.progress(0.49, "Computing Embeddings")
                pc = load_data(prog)
                col2 = utils.render_pc(pc)
                ref_dev = next(model_g14.parameters()).device
                enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()

                sim = torch.matmul(torch.nn.functional.normalize(lvis.feats, dim=-1), torch.nn.functional.normalize(enc, dim=-1).squeeze())
                argsort = torch.argsort(sim, descending=True)
                pred = OrderedDict((lvis.categories[i], sim[i]) for i in argsort if i < len(lvis.categories))
                with col2:
                    for i, (cat, sim) in zip(range(5), pred.items()):
                        st.text(cat)
                        st.caption("Similarity %.4f" % sim)
                
                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                
                prog.progress(1.0, "Idle")

    with tab_img:
        with st.form("rimgform"):
            k = st.slider("Number of items to retrieve", 1, 100, 16, key='rimage')
            pic = st.file_uploader("Upload an Image", key='rimageinput')
            sim_th, filter_fn = retrieval_filter_expand('image')
            if st.form_submit_button("Retrieve with Image"):
                prog.progress(0.49, "Computing Embeddings")
                img = Image.open(pic)
                st.image(img)
                device = clip_model.device
                tn = clip_prep(images=[img], return_tensors="pt").to(device)
                enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
                
                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                
                prog.progress(1.0, "Idle")

    with tab_text:
        with st.form("rtextform"):
            k = st.slider("Number of items to retrieve", 1, 100, 16, key='rtext')
            text = st.text_input("Input Text", key='rtextinput')
            sim_th, filter_fn = retrieval_filter_expand('text')
            if st.form_submit_button("Retrieve with Text"):
                prog.progress(0.49, "Computing Embeddings")
                device = clip_model.device
                tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
                enc = clip_model.get_text_features(**tn).float().cpu()

                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                
                prog.progress(1.0, "Idle")


def classification_lvis(load_data):
    pc = load_data(prog)
    col2 = utils.render_pc(pc)
    prog.progress(0.5, "Running Classification")
    ref_dev = next(model_g14.parameters()).device
    enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()

    sim = torch.matmul(torch.nn.functional.normalize(lvis.feats, dim=-1), torch.nn.functional.normalize(enc, dim=-1).squeeze())
    argsort = torch.argsort(sim, descending=True)
    pred = OrderedDict((lvis.categories[i], sim[i]) for i in argsort if i < len(lvis.categories))
    with col2:
        for i, (cat, sim) in zip(range(5), pred.items()):
            st.text(cat)
            st.caption("Similarity %.4f" % sim)
    prog.progress(1.0, "Idle")

def classification_custom(load_data, cats):
    pc = load_data(prog)
    col2 = utils.render_pc(pc)
    prog.progress(0.5, "Computing Category Embeddings")
    device = clip_model.device
    tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
    feats = clip_model.get_text_features(**tn).float().cpu()
    
    prog.progress(0.5, "Running Classification")
    ref_dev = next(model_g14.parameters()).device
    enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
    sim = torch.matmul(torch.nn.functional.normalize(feats, dim=-1), torch.nn.functional.normalize(enc, dim=-1).squeeze())
    argsort = torch.argsort(sim, descending=True)
    pred = OrderedDict((cats[i], sim[i]) for i in argsort if i < len(cats))
    with col2:
        for i, (cat, sim) in zip(range(5), pred.items()):
            st.text(cat)
            st.caption("Similarity %.4f" % sim)
    prog.progress(1.0, "Idle")


def retrieval_pc(load_data, k, sim_th, filter_fn):
    pc = load_data(prog)
    prog.progress(0.49, "Computing Embeddings")
    col2 = utils.render_pc(pc)
    ref_dev = next(model_g14.parameters()).device
    enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()

    sim = torch.matmul(torch.nn.functional.normalize(lvis.feats, dim=-1), torch.nn.functional.normalize(enc, dim=-1).squeeze())
    argsort = torch.argsort(sim, descending=True)
    pred = OrderedDict((lvis.categories[i], sim[i]) for i in argsort if i < len(lvis.categories))
    with col2:
        for i, (cat, sim) in zip(range(5), pred.items()):
            st.text(cat)
            st.caption("Similarity %.4f" % sim)
    
    prog.progress(0.7, "Running Retrieval")
    retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
    
    prog.progress(1.0, "Idle")

def retrieval_img(pic, k, sim_th, filter_fn):
    img = Image.open(pic)
    prog.progress(0.49, "Computing Embeddings")
    st.image(img)
    device = clip_model.device
    tn = clip_prep(images=[img], return_tensors="pt").to(device)
    enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
    
    prog.progress(0.7, "Running Retrieval")
    retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
    
    prog.progress(1.0, "Idle")

def retrieval_text(text, k, sim_th, filter_fn):
    prog.progress(0.49, "Computing Embeddings")
    device = clip_model.device
    tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
    enc = clip_model.get_text_features(**tn).float().cpu()

    prog.progress(0.7, "Running Retrieval")
    retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
    
    prog.progress(1.0, "Idle")

try:
    f32 = numpy.float32
    half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
    clip_model, clip_prep = load_openclip()
    model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')

    st.caption("This demo presents three tasks: 3D classification, cross-modal retrieval, and cross-modal generation. Examples are provided for demonstration purposes. You're encouraged to fine-tune task parameters and upload files for customized testing as required.")
    st.sidebar.title("TripletMix Demo Configuration Panel")
    task = st.sidebar.selectbox(
        'Task Selection', 
        ("3D Classification", "Cross-modal retrieval", "Cross-modal generation")
    )

    if task == "3D Classification":
        cls_mode = st.sidebar.selectbox(
            'Choose the source of categories', 
            ("LVIS Categories", "Custom Categories")
        )
        load_data = utils.input_3d_shape('rpcinput')
        if cls_mode == "LVIS Categories":
            st.title("Classification with LVIS Categories")
            prog = st.progress(0.0, "Idle")
            if st.sidebar.button("submit"):
                classification_lvis(load_data)
        elif cls_mode == "Custom Categories":
            st.title("Classification with Custom Categories")
            prog = st.progress(0.0, "Idle")
            cats = st.sidebar.text_input("Custom Categories (64 max, separated with comma)")
            cats = [a.strip() for a in cats.split(',')]
            if len(cats) > 64:
                st.error('Maximum 64 custom categories supported in the demo')
            if st.sidebar.button("submit"):
                classification_custom(load_data, cats)
    elif task == "Cross-modal retrieval":
        input_mode = st.sidebar.selectbox(
            'Choose an input modality', 
            ("Point Cloud", "Image", "Text")
        )
        k = st.sidebar.slider("Number of items to retrieve", 1, 100, 16, key='rnum')
        sim_th, filter_fn = retrieval_filter_expand()
        if input_mode == "Point Cloud":
            st.title("Retrieval with Point Cloud")
            prog = st.progress(0.0, "Idle")
            load_data = utils.input_3d_shape('rpcinput')
            if st.sidebar.button("submit"):
                retrieval_pc(load_data, k, sim_th, filter_fn)
        elif input_mode == "Image":
            st.title("Retrieval with Image")
            prog = st.progress(0.0, "Idle") 
            pic = st.sidebar.file_uploader("Upload an Image", key='rimageinput')
            if st.sidebar.button("submit"):
                retrieval_img(pic, k, sim_th, filter_fn)
        elif input_mode == "Text":
            st.title("Retrieval with Text")
            prog = st.progress(0.0, "Idle")
            text = st.sidebar.text_input("Input Text", key='rtextinput')
            if st.sidebar.button("submit"):
                retrieval_text(text, k, sim_th, filter_fn)
    elif task == "Cross-modal generation":
        generation_mode = st.sidebar.selectbox(
            'Choose the mode of generation', 
            ("PointCloud-to-Image", "PointCloud-to-Text")
        )
        pc = st.sidebar.text_input("Input pc", key='rtextinput')
        if generation_mode == "PointCloud-to-Image":
            st.title("Image Generation")
            prog = st.progress(0.0, "Idle")
            if st.sidebar.button("submit"):
                pc = st.text_input("Input pc", key='rtextinput')
        elif generation_mode == "PointCloud-to-Text":
            st.title("Text Generation")
            prog = st.progress(0.0, "Idle")
            if st.sidebar.button("submit"):
                pc = st.text_input("Input pc", key='rtextinput')

except Exception:
    import traceback
    st.error(traceback.format_exc().replace("\n", "  \n"))