Spaces:
Sleeping
Sleeping
File size: 6,897 Bytes
3e21179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import numpy
import trimesh
import trimesh.sample
import trimesh.visual
import trimesh.proximity
import objaverse
import streamlit as st
import plotly.graph_objects as go
import matplotlib.pyplot as plotlib
def get_bytes(x: str):
import io, requests
return io.BytesIO(requests.get(x).content)
def get_image(x: str):
try:
return plotlib.imread(get_bytes(x), 'auto')
except Exception:
raise ValueError("Invalid image", x)
def model_to_pc(mesh: trimesh.Trimesh, n_sample_points=10000):
f32 = numpy.float32
rad = numpy.sqrt(mesh.area / (3 * n_sample_points))
for _ in range(24):
pcd, face_idx = trimesh.sample.sample_surface_even(mesh, n_sample_points, rad)
rad *= 0.85
if len(pcd) == n_sample_points:
break
else:
raise ValueError("Bad geometry, cannot finish sampling.", mesh.area)
if isinstance(mesh.visual, trimesh.visual.ColorVisuals):
rgba = mesh.visual.face_colors[face_idx]
elif isinstance(mesh.visual, trimesh.visual.TextureVisuals):
bc = trimesh.proximity.points_to_barycentric(mesh.triangles[face_idx], pcd)
if mesh.visual.uv is None or len(mesh.visual.uv) < mesh.faces[face_idx].max():
uv = numpy.zeros([len(bc), 2])
st.warning("Invalid UV, filling with zeroes")
else:
uv = numpy.einsum('ntc,nt->nc', mesh.visual.uv[mesh.faces[face_idx]], bc)
material = mesh.visual.material
if hasattr(material, 'materials'):
if len(material.materials) == 0:
rgba = numpy.ones_like(pcd) * 0.8
texture = None
st.warning("Empty MultiMaterial found, falling back to light grey")
else:
material = material.materials[0]
if hasattr(material, 'image'):
texture = material.image
if texture is None:
rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color
elif hasattr(material, 'baseColorTexture'):
texture = material.baseColorTexture
if texture is None:
rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color
else:
texture = None
rgba = numpy.ones_like(pcd) * 0.8
st.warning("Unknown material, falling back to light grey")
if texture is not None:
rgba = trimesh.visual.uv_to_interpolated_color(uv, texture)
if rgba.max() > 1:
if rgba.max() > 255:
rgba = rgba.astype(f32) / rgba.max()
else:
rgba = rgba.astype(f32) / 255.0
return numpy.concatenate([numpy.array(pcd, f32), numpy.array(rgba, f32)[:, :3]], axis=-1)
def trimesh_to_pc(scene_or_mesh):
if isinstance(scene_or_mesh, trimesh.Scene):
meshes = []
for node_name in scene_or_mesh.graph.nodes_geometry:
# which geometry does this node refer to
transform, geometry_name = scene_or_mesh.graph[node_name]
# get the actual potential mesh instance
geometry = scene_or_mesh.geometry[geometry_name].copy()
if not hasattr(geometry, 'triangles'):
continue
geometry: trimesh.Trimesh
geometry = geometry.apply_transform(transform)
meshes.append(geometry)
total_area = sum(geometry.area for geometry in meshes)
if total_area < 1e-6:
raise ValueError("Bad geometry: total area too small (< 1e-6)")
pcs = []
for geometry in meshes:
pcs.append(model_to_pc(geometry, max(1, round(geometry.area / total_area * 10000))))
if not len(pcs):
raise ValueError("Unsupported mesh object: no triangles found")
return numpy.concatenate(pcs)
else:
assert isinstance(scene_or_mesh, trimesh.Trimesh)
return model_to_pc(scene_or_mesh, 10000)
def input_3d_shape(key=None):
if key is None:
objaid_key = model_key = npy_key = swap_key = None
else:
objaid_key = key + "_objaid"
model_key = key + "_model"
npy_key = key + "_npy"
swap_key = key + "_swap"
objaid = st.text_input("Enter an Objaverse ID", key=objaid_key)
model = st.file_uploader("Or upload a model (.glb/.obj/.ply)", key=model_key)
npy = st.file_uploader("Or upload a point cloud numpy array (.npy of Nx3 XYZ or Nx6 XYZRGB)", key=npy_key)
swap_yz_axes = st.radio("Gravity", ["Y is up (for most Objaverse shapes)", "Z is up"], key=swap_key) == "Z is up"
f32 = numpy.float32
def load_data(prog):
# load the model
prog.progress(0.05, "Preparing Point Cloud")
if npy is not None:
pc: numpy.ndarray = numpy.load(npy)
elif model is not None:
pc = trimesh_to_pc(trimesh.load(model, model.name.split(".")[-1]))
elif objaid:
prog.progress(0.1, "Downloading Objaverse Object")
objamodel = objaverse.load_objects([objaid])[objaid]
prog.progress(0.2, "Preparing Point Cloud")
pc = trimesh_to_pc(trimesh.load(objamodel))
else:
raise ValueError("You have to supply 3D input!")
prog.progress(0.25, "Preprocessing Point Cloud")
assert pc.ndim == 2, "invalid pc shape: ndim = %d != 2" % pc.ndim
assert pc.shape[1] in [3, 6], "invalid pc shape: should have 3/6 channels, got %d" % pc.shape[1]
pc = pc.astype(f32)
if swap_yz_axes:
pc[:, [1, 2]] = pc[:, [2, 1]]
pc[:, :3] = pc[:, :3] - numpy.mean(pc[:, :3], axis=0)
pc[:, :3] = pc[:, :3] / numpy.linalg.norm(pc[:, :3], axis=-1).max()
if pc.shape[1] == 3:
pc = numpy.concatenate([pc, numpy.ones_like(pc) * 0.4], axis=-1)
prog.progress(0.27, "Normalized Point Cloud")
if pc.shape[0] >= 10000:
pc = pc[numpy.random.permutation(len(pc))[:10000]]
elif pc.shape[0] == 0:
raise ValueError("Got empty point cloud!")
elif pc.shape[0] < 10000:
pc = numpy.concatenate([pc, pc[numpy.random.randint(len(pc), size=[10000 - len(pc)])]])
prog.progress(0.3, "Preprocessed Point Cloud")
return pc.astype(f32)
return load_data
def render_pc(pc):
rand = numpy.random.permutation(len(pc))[:2048]
pc = pc[rand]
rgb = (pc[:, 3:] * 255).astype(numpy.uint8)
g = go.Scatter3d(
x=pc[:, 0], y=pc[:, 1], z=pc[:, 2],
mode='markers',
marker=dict(size=2, color=[f'rgb({rgb[i, 0]}, {rgb[i, 1]}, {rgb[i, 2]})' for i in range(len(pc))]),
)
fig = go.Figure(data=[g])
fig.update_layout(scene_camera=dict(up=dict(x=0, y=1, z=0)))
fig.update_scenes(aspectmode="data")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(fig, use_container_width=True)
# st.caption("Point Cloud Preview")
return col2
|