James McCool commited on
Commit
f2f4ebd
·
1 Parent(s): ca15fa4

Update scoring percentage calculations to include separate metrics for Draftkings and Fanduel ('DK_Runs/$' and 'FD_Runs/$'). Adjust column selections and renaming for improved clarity in player statistics, while dropping unnecessary salary columns based on the selected site.

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -117,8 +117,9 @@ def init_baselines():
117
  cursor = collection.find()
118
  team_frame = pd.DataFrame(cursor)
119
  scoring_percentages = team_frame.drop(columns=['_id'])
120
- scoring_percentages['Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary'] / 1000)
121
- scoring_percentages = scoring_percentages[['Names', 'Avg_Salary_DK', 'Avg_Salary_FD', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'Runs/$', '8+ runs', 'Win Percentage',
 
122
  'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
123
  'DK Turbo Top Score', 'FD Turbo Top Score']]
124
  scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
@@ -385,11 +386,11 @@ with tab1:
385
  scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
386
  scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
387
  if site_var == 'Draftkings':
388
- scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
389
- scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD'], axis=1)
390
  elif site_var == 'Fanduel':
391
- scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
392
- scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK'], axis=1)
393
 
394
  if view_var == "Simple":
395
  scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
@@ -399,7 +400,7 @@ with tab1:
399
  if prio_var is not None:
400
  scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var]
401
  scoring_percentages = scoring_percentages.set_index('Names', drop=True)
402
- st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg_Salary', 'Own%']).format(game_format, precision=2), height=750, use_container_width = True)
403
 
404
  with tab2:
405
  st.header("Player ROO")
 
117
  cursor = collection.find()
118
  team_frame = pd.DataFrame(cursor)
119
  scoring_percentages = team_frame.drop(columns=['_id'])
120
+ scoring_percentages['DK_Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary_DK'] / 1000)
121
+ scoring_percentages['FD_Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary_FD'] / 1000)
122
+ scoring_percentages = scoring_percentages[['Names', 'Avg_Salary_DK', 'Avg_Salary_FD', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'DK_Runs/$', 'FD_Runs/$', '8+ runs', 'Win Percentage',
123
  'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
124
  'DK Turbo Top Score', 'FD Turbo Top Score']]
125
  scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
 
386
  scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
387
  scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
388
  if site_var == 'Draftkings':
389
+ scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs', 'DK_Runs/$': 'Runs/$'})
390
+ scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD', 'FD_Runs/$'], axis=1)
391
  elif site_var == 'Fanduel':
392
+ scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs', 'FD_Runs/$': 'Runs/$'})
393
+ scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK', 'DK_Runs/$'], axis=1)
394
 
395
  if view_var == "Simple":
396
  scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
 
400
  if prio_var is not None:
401
  scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var]
402
  scoring_percentages = scoring_percentages.set_index('Names', drop=True)
403
+ st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own%']).format(game_format, precision=2), height=750, use_container_width = True)
404
 
405
  with tab2:
406
  st.header("Player ROO")