Spaces:
Running
Running
James McCool
commited on
Commit
·
f2f4ebd
1
Parent(s):
ca15fa4
Update scoring percentage calculations to include separate metrics for Draftkings and Fanduel ('DK_Runs/$' and 'FD_Runs/$'). Adjust column selections and renaming for improved clarity in player statistics, while dropping unnecessary salary columns based on the selected site.
Browse files
app.py
CHANGED
@@ -117,8 +117,9 @@ def init_baselines():
|
|
117 |
cursor = collection.find()
|
118 |
team_frame = pd.DataFrame(cursor)
|
119 |
scoring_percentages = team_frame.drop(columns=['_id'])
|
120 |
-
scoring_percentages['
|
121 |
-
scoring_percentages = scoring_percentages[
|
|
|
122 |
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
|
123 |
'DK Turbo Top Score', 'FD Turbo Top Score']]
|
124 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
@@ -385,11 +386,11 @@ with tab1:
|
|
385 |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
|
386 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
387 |
if site_var == 'Draftkings':
|
388 |
-
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
389 |
-
scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD'], axis=1)
|
390 |
elif site_var == 'Fanduel':
|
391 |
-
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
392 |
-
scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK'], axis=1)
|
393 |
|
394 |
if view_var == "Simple":
|
395 |
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
|
@@ -399,7 +400,7 @@ with tab1:
|
|
399 |
if prio_var is not None:
|
400 |
scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var]
|
401 |
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
|
402 |
-
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['
|
403 |
|
404 |
with tab2:
|
405 |
st.header("Player ROO")
|
|
|
117 |
cursor = collection.find()
|
118 |
team_frame = pd.DataFrame(cursor)
|
119 |
scoring_percentages = team_frame.drop(columns=['_id'])
|
120 |
+
scoring_percentages['DK_Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary_DK'] / 1000)
|
121 |
+
scoring_percentages['FD_Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary_FD'] / 1000)
|
122 |
+
scoring_percentages = scoring_percentages[['Names', 'Avg_Salary_DK', 'Avg_Salary_FD', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'DK_Runs/$', 'FD_Runs/$', '8+ runs', 'Win Percentage',
|
123 |
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
|
124 |
'DK Turbo Top Score', 'FD Turbo Top Score']]
|
125 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
|
|
386 |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
|
387 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
388 |
if site_var == 'Draftkings':
|
389 |
+
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs', 'DK_Runs/$': 'Runs/$'})
|
390 |
+
scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD', 'FD_Runs/$'], axis=1)
|
391 |
elif site_var == 'Fanduel':
|
392 |
+
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs', 'FD_Runs/$': 'Runs/$'})
|
393 |
+
scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK', 'DK_Runs/$'], axis=1)
|
394 |
|
395 |
if view_var == "Simple":
|
396 |
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
|
|
|
400 |
if prio_var is not None:
|
401 |
scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var]
|
402 |
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
|
403 |
+
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own%']).format(game_format, precision=2), height=750, use_container_width = True)
|
404 |
|
405 |
with tab2:
|
406 |
st.header("Player ROO")
|