James McCool
Add support for secondary and auxiliary slates in lineup initialization; refactor data loading and display logic for DraftKings and FanDuel
ab2c770
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NBA_DFS"]
return db
db = init_conn()
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
@st.cache_data(ttl=60)
def load_overall_stats():
collection = db["DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display.rename(columns={"player_id": "player_ID"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
sd_raw = raw_display.sort_values(by='Median', ascending=False)
print(sd_raw.head(10))
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
roo_raw = raw_display.sort_values(by='Median', ascending=False)
timestamp = raw_display['timestamp'].values[0]
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp
@st.cache_data(ttl = 60)
def init_DK_lineups(slate_desig: str):
if slate_desig == 'Main Slate':
collection = db['DK_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NBA_seed_frame"]
cursor = collection.find().limit(10000)
elif slate_desig == 'Secondary':
collection = db['DK_NBA_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NBA_Secondary_seed_frame"]
cursor = collection.find().limit(10000)
elif slate_desig == 'Auxiliary':
collection = db['DK_NBA_Auxiliary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NBA_Auxiliary_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_DK_SD_lineups(slate_desig: str):
if slate_desig == 'Main Slate':
collection = db["DK_NBA_SD_seed_frame"]
elif slate_desig == 'Secondary':
collection = db["DK_NBA_Secondary_SD_seed_frame"]
elif slate_desig == 'Auxiliary':
collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups(slate_desig: str):
if slate_desig == 'Main Slate':
collection = db['FD_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NBA_seed_frame"]
cursor = collection.find().limit(10000)
elif slate_desig == 'Secondary':
collection = db['FD_NBA_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NBA_Secondary_seed_frame"]
cursor = collection.find().limit(10000)
elif slate_desig == 'Auxiliary':
collection = db['FD_NBA_Auxiliary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NBA_Auxiliary_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 60)
def init_FD_SD_lineups(slate_desig: str):
if slate_desig == 'Main Slate':
collection = db["FD_NBA_SD_seed_frame"]
elif slate_desig == 'Secondary':
collection = db["FD_NBA_Secondary_SD_seed_frame"]
elif slate_desig == 'Auxiliary':
collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
dk_lineups = pd.DataFrame(columns=dk_columns)
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
fd_lineups = pd.DataFrame(columns=fd_columns)
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
with tab1:
with st.expander("Info and Filters"):
with st.container():
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
with st.container():
# First row - timestamp and reset button
col1, col2 = st.columns([3, 1])
with col1:
st.info(t_stamp)
with col2:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
dk_lineups = pd.DataFrame(columns=dk_columns)
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
fd_lineups = pd.DataFrame(columns=fd_columns)
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
with col2:
slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
with col3:
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
# Process site selection
if site_var2 == 'Draftkings':
if slate_type_var2 == 'Regular':
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
elif slate_type_var2 == 'Showdown':
site_baselines = sd_raw[sd_raw['site'] == 'Draftkings']
elif site_var2 == 'Fanduel':
if slate_type_var2 == 'Regular':
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
elif slate_type_var2 == 'Showdown':
site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
with col4:
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split')
if slate_split == 'Main Slate':
if slate_type_var2 == 'Regular':
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
elif slate_type_var2 == 'Showdown':
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #1']
elif slate_split == 'Secondary':
if slate_type_var2 == 'Regular':
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
elif slate_type_var2 == 'Showdown':
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
with col5:
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
else:
team_var2 = raw_baselines.Team.values.tolist()
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
col1, col2 = st.columns(2)
with col1:
low_salary = st.number_input('Enter Lowest Salary', min_value=300, max_value=15000, value=300, step=100, key='low_salary')
with col2:
high_salary = st.number_input('Enter Highest Salary', min_value=300, max_value=25000, value=25000, step=100, key='high_salary')
display_container_1 = st.empty()
display_dl_container_1 = st.empty()
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
if view_var2 == 'Advanced':
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
elif view_var2 == 'Simple':
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
export_data = display_proj.copy()
# display_proj = display_proj.set_index('Player')
st.session_state.display_proj = display_proj.set_index('Player', drop=True)
with display_container_1:
display_container = st.empty()
if 'display_proj' in st.session_state:
if pos_var2 == 'All':
st.session_state.display_proj = st.session_state.display_proj
elif pos_var2 != 'All':
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2),
height=1000, use_container_width = True)
with display_dl_container_1:
display_dl_container = st.empty()
if 'display_proj' in st.session_state:
st.download_button(
label="Export Tables",
data=convert_df_to_csv(export_data),
file_name='NBA_ROO_export.csv',
mime='text/csv',
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
dk_lineups = pd.DataFrame(columns=dk_columns)
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
fd_lineups = pd.DataFrame(columns=fd_columns)
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary'))
with col2:
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
if 'working_seed' in st.session_state:
del st.session_state['working_seed']
with col3:
slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'))
with col4:
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
with col5:
if site_var1 == 'Draftkings':
if slate_type_var1 == 'Regular':
column_names = dk_columns
elif slate_type_var1 == 'Showdown':
column_names = dk_sd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = dk_raw.Player.values.tolist()
elif site_var1 == 'Fanduel':
if slate_type_var1 == 'Regular':
column_names = fd_columns
elif slate_type_var1 == 'Showdown':
column_names = fd_sd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = fd_raw.Player.values.tolist()
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
if site_var1 == 'Draftkings':
for col_idx in range(8):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
elif site_var1 == 'Fanduel':
for col_idx in range(9):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NBA_optimals_export.csv',
mime='text/csv',
)
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = st.session_state.working_seed
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_type_var1 == 'Regular':
st.session_state.working_seed = init_DK_lineups(slate_var1)
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
if slate_type_var1 == 'Regular':
st.session_state.working_seed = init_DK_lineups(slate_var1)
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = st.session_state.working_seed
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_type_var1 == 'Regular':
st.session_state.working_seed = init_FD_lineups(slate_var1)
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
if slate_type_var1 == 'Regular':
st.session_state.working_seed = init_FD_lineups(slate_var1)
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
export_file = st.session_state.data_export_display.copy()
if site_var1 == 'Draftkings':
if slate_type_var1 == 'Regular':
for col_idx in range(8):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
elif slate_type_var1 == 'Showdown':
for col_idx in range(5):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd)
elif site_var1 == 'Fanduel':
if slate_type_var1 == 'Regular':
for col_idx in range(9):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
elif slate_type_var1 == 'Showdown':
for col_idx in range(5):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var1 == 'Draftkings':
if slate_type_var1 == 'Regular':
st.session_state.working_seed = dk_lineups.copy()
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = dk_sd_lineups.copy()
elif site_var1 == 'Fanduel':
if slate_type_var1 == 'Regular':
st.session_state.working_seed = fd_lineups.copy()
elif slate_type_var1 == 'Showdown':
st.session_state.working_seed = fd_sd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals",
data=convert_df(export_file),
file_name='NBA_display_optimals.csv',
mime='text/csv',
)
with st.container():
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var1 == 'Draftkings':
if slate_type_var1 == 'Regular':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
],
'Proj': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Own': [
np.min(st.session_state.working_seed[:,14]),
np.mean(st.session_state.working_seed[:,14]),
np.max(st.session_state.working_seed[:,14]),
np.std(st.session_state.working_seed[:,14])
]
})
elif slate_type_var1 == 'Showdown':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,12]),
np.mean(st.session_state.working_seed[:,12]),
np.max(st.session_state.working_seed[:,12]),
np.std(st.session_state.working_seed[:,12])
]
})
elif site_var1 == 'Fanduel':
if slate_type_var1 == 'Regular':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Proj': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Own': [
np.min(st.session_state.working_seed[:,15]),
np.mean(st.session_state.working_seed[:,15]),
np.max(st.session_state.working_seed[:,15]),
np.std(st.session_state.working_seed[:,15])
]
})
elif slate_type_var1 == 'Showdown':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,12]),
np.mean(st.session_state.working_seed[:,12]),
np.max(st.session_state.working_seed[:,12]),
np.std(st.session_state.working_seed[:,12])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if slate_type_var1 == 'Regular':
if site_var1 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :9]
elif slate_type_var1 == 'Showdown':
if site_var1 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :5]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :5]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if slate_type_var1 == 'Regular':
if site_var1 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :9]
elif slate_type_var1 == 'Showdown':
if site_var1 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :5]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :5]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_seed_frame_frequency.csv',
mime='text/csv',
)