James McCool commited on
Commit
ab2c770
·
1 Parent(s): a16fe9a

Add support for secondary and auxiliary slates in lineup initialization; refactor data loading and display logic for DraftKings and FanDuel

Browse files
Files changed (1) hide show
  1. app.py +425 -342
app.py CHANGED
@@ -19,7 +19,9 @@ def init_conn():
19
  db = init_conn()
20
 
21
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
 
22
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
 
23
 
24
  roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
25
 
@@ -69,40 +71,61 @@ def load_overall_stats():
69
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
70
  fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
71
 
72
- collection = db["Player_Range_Of_Outcomes"]
73
  cursor = collection.find()
74
 
75
  raw_display = pd.DataFrame(list(cursor))
76
  raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
77
- 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
 
78
  raw_display = raw_display.loc[raw_display['Median'] > 0]
79
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
80
- roo_raw = raw_display.sort_values(by='Median', ascending=False)
81
 
82
- timestamp = raw_display['timestamp'].values[0]
83
 
84
- collection = db["Range_Of_Outcomes_Backlog"]
85
  cursor = collection.find()
86
 
87
  raw_display = pd.DataFrame(list(cursor))
88
  raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
89
- 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
90
- roo_backlog = raw_display.sort_values(by='Date', ascending=False)
91
- roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
 
 
 
92
 
93
- return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
94
 
95
  @st.cache_data(ttl = 60)
96
- def init_DK_lineups():
97
 
98
- collection = db['DK_NBA_name_map']
99
- cursor = collection.find()
100
- raw_data = pd.DataFrame(list(cursor))
101
- names_dict = dict(zip(raw_data['key'], raw_data['value']))
102
-
103
- collection = db["DK_NBA_seed_frame"]
104
- cursor = collection.find().limit(10000)
105
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  raw_display = pd.DataFrame(list(cursor))
107
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
108
  dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
@@ -113,16 +136,51 @@ def init_DK_lineups():
113
  return DK_seed
114
 
115
  @st.cache_data(ttl = 60)
116
- def init_FD_lineups():
117
-
118
- collection = db['FD_NBA_name_map']
119
- cursor = collection.find()
120
- raw_data = pd.DataFrame(list(cursor))
121
- names_dict = dict(zip(raw_data['key'], raw_data['value']))
122
-
123
- collection = db["FD_NBA_seed_frame"]
 
124
  cursor = collection.find().limit(10000)
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  raw_display = pd.DataFrame(list(cursor))
127
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
128
  dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
@@ -132,6 +190,24 @@ def init_FD_lineups():
132
 
133
  return FD_seed
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  def convert_df_to_csv(df):
136
  return df.to_csv().encode('utf-8')
137
 
@@ -140,171 +216,78 @@ def convert_df(array):
140
  array = pd.DataFrame(array, columns=column_names)
141
  return array.to_csv().encode('utf-8')
142
 
143
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
144
  salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
145
-
146
- try:
147
- dk_lineups = init_DK_lineups()
148
- fd_lineups = init_FD_lineups()
149
- except:
150
- dk_lineups = pd.DataFrame(columns=dk_columns)
151
- fd_lineups = pd.DataFrame(columns=fd_columns)
152
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
153
 
154
  tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
155
 
156
- with st.sidebar:
157
- st.header("Quick Builder")
158
- st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
159
- sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
160
- sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
161
-
162
- if sidebar_site == 'Draftkings':
163
- roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
164
- roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
165
- roo_sample = roo_sample.sort_values(by='Own', ascending=False)
166
- selected_pg = []
167
- selected_sg = []
168
- selected_sf = []
169
- selected_pf = []
170
- selected_c = []
171
- selected_g = []
172
- selected_f = []
173
- selected_flex = []
174
- elif sidebar_site == 'Fanduel':
175
- roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
176
- roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
177
- roo_sample = roo_sample.sort_values(by='Own', ascending=False)
178
- selected_pg1 = []
179
- selected_pg2 = []
180
- selected_sg1 = []
181
- selected_sg2 = []
182
- selected_sf1 = []
183
- selected_sf2 = []
184
- selected_pf1 = []
185
- selected_pf2 = []
186
- selected_c1 = []
187
-
188
- # Get unique players by position from dk_roo_raw
189
- pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
190
- sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
191
- sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
192
- pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
193
- centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
194
- guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
195
- forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
196
- flex = roo_sample['Player'].unique()
197
-
198
- if sidebar_site == 'Draftkings':
199
- selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
200
- selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
201
- selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
202
- selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
203
- selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
204
- selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
205
- selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
206
- selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
207
-
208
- # Combine all selected players
209
- all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
210
-
211
- elif sidebar_site == 'Fanduel':
212
- selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
213
- selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
214
- selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
215
- selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
216
- selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
217
- selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
218
- selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
219
- selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
220
- selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
221
-
222
- # Combine all selected players
223
- all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
224
-
225
- if all_selected:
226
- # Get stats for selected players
227
- selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
228
-
229
- # Calculate sums
230
- salary_sum = selected_stats['Salary'].sum()
231
- median_sum = selected_stats['Median'].sum()
232
- own_sum = selected_stats['Own'].sum()
233
- levx_sum = selected_stats['LevX'].sum()
234
-
235
- # Display sums
236
- st.write('---')
237
- if sidebar_site == 'Draftkings':
238
- if salary_sum > 50000:
239
- st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
240
- else:
241
- st.write(f'Total Salary: ${salary_sum:.2f}')
242
- elif sidebar_site == 'Fanduel':
243
- if salary_sum > 60000:
244
- st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
245
- else:
246
- st.write(f'Total Salary: ${salary_sum:.2f}')
247
- st.write(f'Total Median: {median_sum:.2f}')
248
- st.write(f'Total Ownership: {own_sum:.2f}%')
249
- st.write(f'Total LevX: {levx_sum:.2f}')
250
-
251
  with tab1:
252
- with st.container():
253
- st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
254
- with st.container():
255
- # First row - timestamp and reset button
256
- col1, col2 = st.columns([3, 1])
257
- with col1:
258
- st.info(t_stamp)
259
- with col2:
260
- if st.button("Load/Reset Data", key='reset1'):
261
- st.cache_data.clear()
262
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
263
- id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
264
- dk_lineups = init_DK_lineups()
265
- fd_lineups = init_FD_lineups()
266
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
267
- for key in st.session_state.keys():
268
- del st.session_state[key]
269
-
270
- # Second row - main options
271
- col1, col2, col3, col4 = st.columns(4)
 
 
 
 
 
272
  with col1:
273
  view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
274
  with col2:
 
 
275
  site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
276
 
277
  # Process site selection
278
  if site_var2 == 'Draftkings':
279
- site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
280
- site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
 
 
281
  elif site_var2 == 'Fanduel':
282
- site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
283
- site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
284
- with col3:
285
- slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
 
 
286
 
287
  if slate_split == 'Main Slate':
288
- raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
 
 
 
289
  elif slate_split == 'Secondary':
290
- raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
291
- elif slate_split == 'Backlog':
292
- raw_baselines = site_backlog
293
- # Third row - backlog options
294
- col1, col2 = st.columns(2)
295
- with col1:
296
- view_all = st.checkbox("View all dates?", key='view_all')
297
- with col2:
298
- if not view_all:
299
- date_var2 = st.date_input("Select date", key='date_var2')
300
-
301
- if view_all:
302
- raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
303
- else:
304
- raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
305
- raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
306
 
307
- with col4:
308
  split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
309
  if split_var2 == 'Specific Games':
310
  team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
@@ -312,10 +295,16 @@ with tab1:
312
  team_var2 = raw_baselines.Team.values.tolist()
313
 
314
  pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
 
 
 
 
 
315
 
316
  display_container_1 = st.empty()
317
  display_dl_container_1 = st.empty()
318
  display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
 
319
  if view_var2 == 'Advanced':
320
  display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
321
  'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
@@ -323,9 +312,8 @@ with tab1:
323
  display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
324
  export_data = display_proj.copy()
325
 
326
-
327
- display_proj = display_proj.set_index('Player')
328
- st.session_state.display_proj = display_proj
329
 
330
  with display_container_1:
331
  display_container = st.empty()
@@ -334,7 +322,8 @@ with tab1:
334
  st.session_state.display_proj = st.session_state.display_proj
335
  elif pos_var2 != 'All':
336
  st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
337
- st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True)
 
338
 
339
  with display_dl_container_1:
340
  display_dl_container = st.empty()
@@ -347,50 +336,57 @@ with tab1:
347
  )
348
 
349
  with tab2:
350
- col1, col2 = st.columns([1, 7])
351
- with col1:
352
  if st.button("Load/Reset Data", key='reset2'):
353
  st.cache_data.clear()
354
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
355
- dk_lineups = init_DK_lineups()
356
- fd_lineups = init_FD_lineups()
 
 
 
 
 
 
357
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
358
  for key in st.session_state.keys():
359
  del st.session_state[key]
360
-
361
- slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
362
- site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
363
- lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
364
-
365
- if site_var1 == 'Draftkings':
366
- raw_baselines = dk_raw
367
- ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
368
- id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
369
- # Get the minimum and maximum ownership values from dk_lineups
370
- min_own = np.min(dk_lineups[:,14])
371
- max_own = np.max(dk_lineups[:,14])
372
- column_names = dk_columns
373
-
374
- player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
375
- if player_var1 == 'Specific Players':
376
- player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
377
- elif player_var1 == 'Full Slate':
378
- player_var2 = dk_raw.Player.values.tolist()
379
-
380
- elif site_var1 == 'Fanduel':
381
- raw_baselines = fd_raw
382
- ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
383
- id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
384
- min_own = np.min(fd_lineups[:,15])
385
- max_own = np.max(fd_lineups[:,15])
386
- column_names = fd_columns
387
-
388
- player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
389
- if player_var1 == 'Specific Players':
390
- player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
391
- elif player_var1 == 'Full Slate':
392
- player_var2 = fd_raw.Player.values.tolist()
393
-
 
 
394
  if st.button("Prepare data export", key='data_export'):
395
  data_export = st.session_state.working_seed.copy()
396
  if site_var1 == 'Draftkings':
@@ -404,74 +400,103 @@ with tab2:
404
  data=convert_df(data_export),
405
  file_name='NBA_optimals_export.csv',
406
  mime='text/csv',
407
- )
408
- with col2:
409
-
410
- if site_var1 == 'Draftkings':
411
- if 'working_seed' in st.session_state:
412
- st.session_state.working_seed = st.session_state.working_seed
413
- if player_var1 == 'Specific Players':
414
- st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
415
- elif player_var1 == 'Full Slate':
416
- st.session_state.working_seed = dk_lineups.copy()
417
- st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
418
- elif 'working_seed' not in st.session_state:
419
- st.session_state.working_seed = dk_lineups.copy()
420
- st.session_state.working_seed = st.session_state.working_seed
421
- if player_var1 == 'Specific Players':
422
- st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
423
- elif player_var1 == 'Full Slate':
424
- st.session_state.working_seed = dk_lineups.copy()
425
- st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
426
 
427
- elif site_var1 == 'Fanduel':
428
- if 'working_seed' in st.session_state:
429
- st.session_state.working_seed = st.session_state.working_seed
430
- if player_var1 == 'Specific Players':
431
- st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
432
- elif player_var1 == 'Full Slate':
433
- st.session_state.working_seed = fd_lineups.copy()
434
- st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
435
- elif 'working_seed' not in st.session_state:
436
- st.session_state.working_seed = fd_lineups.copy()
437
  st.session_state.working_seed = st.session_state.working_seed
438
- if player_var1 == 'Specific Players':
439
- st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
440
- elif player_var1 == 'Full Slate':
441
- st.session_state.working_seed = fd_lineups.copy()
442
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
443
 
444
- export_file = st.session_state.data_export_display.copy()
445
- if site_var1 == 'Draftkings':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446
  for col_idx in range(8):
447
  export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
448
- elif site_var1 == 'Fanduel':
 
 
 
 
449
  for col_idx in range(9):
450
  export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
451
-
452
- with st.container():
453
- if st.button("Reset Optimals", key='reset3'):
454
- for key in st.session_state.keys():
455
- del st.session_state[key]
456
- if site_var1 == 'Draftkings':
 
 
 
 
457
  st.session_state.working_seed = dk_lineups.copy()
458
- elif site_var1 == 'Fanduel':
 
 
 
459
  st.session_state.working_seed = fd_lineups.copy()
460
- if 'data_export_display' in st.session_state:
461
- st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
462
- st.download_button(
463
- label="Export display optimals",
464
- data=convert_df(export_file),
465
- file_name='NBA_display_optimals.csv',
466
- mime='text/csv',
467
- )
468
-
469
- with st.container():
470
- if 'working_seed' in st.session_state:
471
- # Create a new dataframe with summary statistics
472
- if site_var1 == 'Draftkings':
 
 
 
473
  summary_df = pd.DataFrame({
474
- 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
475
  'Salary': [
476
  np.min(st.session_state.working_seed[:,8]),
477
  np.mean(st.session_state.working_seed[:,8]),
@@ -491,7 +516,31 @@ with tab2:
491
  np.std(st.session_state.working_seed[:,14])
492
  ]
493
  })
494
- elif site_var1 == 'Fanduel':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
  summary_df = pd.DataFrame({
496
  'Metric': ['Min', 'Average', 'Max', 'STDdev'],
497
  'Salary': [
@@ -513,84 +562,118 @@ with tab2:
513
  np.std(st.session_state.working_seed[:,15])
514
  ]
515
  })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
 
517
- # Set the index of the summary dataframe as the "Metric" column
518
- summary_df = summary_df.set_index('Metric')
519
 
520
- # Display the summary dataframe
521
- st.subheader("Optimal Statistics")
522
- st.dataframe(summary_df.style.format({
523
- 'Salary': '{:.2f}',
524
- 'Proj': '{:.2f}',
525
- 'Own': '{:.2f}'
526
- }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
527
 
528
- with st.container():
529
- tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
530
- with tab1:
531
- if 'data_export_display' in st.session_state:
 
532
  if site_var1 == 'Draftkings':
533
  player_columns = st.session_state.data_export_display.iloc[:, :8]
534
  elif site_var1 == 'Fanduel':
535
  player_columns = st.session_state.data_export_display.iloc[:, :9]
536
-
537
- # Flatten the DataFrame and count unique values
538
- value_counts = player_columns.values.flatten().tolist()
539
- value_counts = pd.Series(value_counts).value_counts()
540
-
541
- percentages = (value_counts / lineup_num_var * 100).round(2)
542
-
543
- # Create a DataFrame with the results
544
- summary_df = pd.DataFrame({
545
- 'Player': value_counts.index,
546
- 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
547
- 'Frequency': value_counts.values,
548
- 'Percentage': percentages.values
549
- })
550
-
551
- # Sort by frequency in descending order
552
- summary_df = summary_df.sort_values('Frequency', ascending=False)
553
-
554
- # Display the table
555
- st.write("Player Frequency Table:")
556
- st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
557
 
558
- st.download_button(
559
- label="Export player frequency",
560
- data=convert_df_to_csv(summary_df),
561
- file_name='NBA_player_frequency.csv',
562
- mime='text/csv',
563
- )
564
- with tab2:
565
- if 'working_seed' in st.session_state:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566
  if site_var1 == 'Draftkings':
567
  player_columns = st.session_state.working_seed[:, :8]
568
  elif site_var1 == 'Fanduel':
569
  player_columns = st.session_state.working_seed[:, :9]
570
-
571
- # Flatten the DataFrame and count unique values
572
- value_counts = player_columns.flatten().tolist()
573
- value_counts = pd.Series(value_counts).value_counts()
574
-
575
- percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
576
- # Create a DataFrame with the results
577
- summary_df = pd.DataFrame({
578
- 'Player': value_counts.index,
579
- 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
580
- 'Frequency': value_counts.values,
581
- 'Percentage': percentages.values
582
- })
583
-
584
- # Sort by frequency in descending order
585
- summary_df = summary_df.sort_values('Frequency', ascending=False)
586
-
587
- # Display the table
588
- st.write("Seed Frame Frequency Table:")
589
- st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
590
 
591
- st.download_button(
592
- label="Export seed frame frequency",
593
- data=convert_df_to_csv(summary_df),
594
- file_name='NBA_seed_frame_frequency.csv',
595
- mime='text/csv',
596
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  db = init_conn()
20
 
21
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
+ dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
23
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
24
+ fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
25
 
26
  roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
27
 
 
71
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
72
  fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
73
 
74
+ collection = db["Player_SD_Range_Of_Outcomes"]
75
  cursor = collection.find()
76
 
77
  raw_display = pd.DataFrame(list(cursor))
78
  raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
79
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
80
+ raw_display = raw_display.rename(columns={"player_id": "player_ID"})
81
  raw_display = raw_display.loc[raw_display['Median'] > 0]
82
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
83
+ sd_raw = raw_display.sort_values(by='Median', ascending=False)
84
 
85
+ print(sd_raw.head(10))
86
 
87
+ collection = db["Player_Range_Of_Outcomes"]
88
  cursor = collection.find()
89
 
90
  raw_display = pd.DataFrame(list(cursor))
91
  raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
92
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
93
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
94
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
95
+ roo_raw = raw_display.sort_values(by='Median', ascending=False)
96
+
97
+ timestamp = raw_display['timestamp'].values[0]
98
 
99
+ return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp
100
 
101
  @st.cache_data(ttl = 60)
102
+ def init_DK_lineups(slate_desig: str):
103
 
104
+ if slate_desig == 'Main Slate':
105
+ collection = db['DK_NBA_name_map']
106
+ cursor = collection.find()
107
+ raw_data = pd.DataFrame(list(cursor))
108
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
109
+
110
+ collection = db["DK_NBA_seed_frame"]
111
+ cursor = collection.find().limit(10000)
112
+ elif slate_desig == 'Secondary':
113
+ collection = db['DK_NBA_Secondary_name_map']
114
+ cursor = collection.find()
115
+ raw_data = pd.DataFrame(list(cursor))
116
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
117
+
118
+ collection = db["DK_NBA_Secondary_seed_frame"]
119
+ cursor = collection.find().limit(10000)
120
+ elif slate_desig == 'Auxiliary':
121
+ collection = db['DK_NBA_Auxiliary_name_map']
122
+ cursor = collection.find()
123
+ raw_data = pd.DataFrame(list(cursor))
124
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
125
+
126
+ collection = db["DK_NBA_Auxiliary_seed_frame"]
127
+ cursor = collection.find().limit(10000)
128
+
129
  raw_display = pd.DataFrame(list(cursor))
130
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
131
  dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
 
136
  return DK_seed
137
 
138
  @st.cache_data(ttl = 60)
139
+ def init_DK_SD_lineups(slate_desig: str):
140
+
141
+ if slate_desig == 'Main Slate':
142
+ collection = db["DK_NBA_SD_seed_frame"]
143
+ elif slate_desig == 'Secondary':
144
+ collection = db["DK_NBA_Secondary_SD_seed_frame"]
145
+ elif slate_desig == 'Auxiliary':
146
+ collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
147
+
148
  cursor = collection.find().limit(10000)
149
 
150
+ raw_display = pd.DataFrame(list(cursor))
151
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
152
+ DK_seed = raw_display.to_numpy()
153
+
154
+ return DK_seed
155
+
156
+ @st.cache_data(ttl = 60)
157
+ def init_FD_lineups(slate_desig: str):
158
+
159
+ if slate_desig == 'Main Slate':
160
+ collection = db['FD_NBA_name_map']
161
+ cursor = collection.find()
162
+ raw_data = pd.DataFrame(list(cursor))
163
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
164
+
165
+ collection = db["FD_NBA_seed_frame"]
166
+ cursor = collection.find().limit(10000)
167
+ elif slate_desig == 'Secondary':
168
+ collection = db['FD_NBA_Secondary_name_map']
169
+ cursor = collection.find()
170
+ raw_data = pd.DataFrame(list(cursor))
171
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
172
+
173
+ collection = db["FD_NBA_Secondary_seed_frame"]
174
+ cursor = collection.find().limit(10000)
175
+ elif slate_desig == 'Auxiliary':
176
+ collection = db['FD_NBA_Auxiliary_name_map']
177
+ cursor = collection.find()
178
+ raw_data = pd.DataFrame(list(cursor))
179
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
180
+
181
+ collection = db["FD_NBA_Auxiliary_seed_frame"]
182
+ cursor = collection.find().limit(10000)
183
+
184
  raw_display = pd.DataFrame(list(cursor))
185
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
186
  dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
 
190
 
191
  return FD_seed
192
 
193
+ @st.cache_data(ttl = 60)
194
+ def init_FD_SD_lineups(slate_desig: str):
195
+
196
+ if slate_desig == 'Main Slate':
197
+ collection = db["FD_NBA_SD_seed_frame"]
198
+ elif slate_desig == 'Secondary':
199
+ collection = db["FD_NBA_Secondary_SD_seed_frame"]
200
+ elif slate_desig == 'Auxiliary':
201
+ collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
202
+
203
+ cursor = collection.find().limit(10000)
204
+
205
+ raw_display = pd.DataFrame(list(cursor))
206
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
207
+ DK_seed = raw_display.to_numpy()
208
+
209
+ return DK_seed
210
+
211
  def convert_df_to_csv(df):
212
  return df.to_csv().encode('utf-8')
213
 
 
216
  array = pd.DataFrame(array, columns=column_names)
217
  return array.to_csv().encode('utf-8')
218
 
219
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
220
  salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
221
+ id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
222
+ salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
223
+ id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
224
+ dk_lineups = pd.DataFrame(columns=dk_columns)
225
+ dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
226
+ fd_lineups = pd.DataFrame(columns=fd_columns)
227
+ fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
228
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
229
 
230
  tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
  with tab1:
233
+
234
+ with st.expander("Info and Filters"):
235
+ with st.container():
236
+ st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
237
+ with st.container():
238
+ # First row - timestamp and reset button
239
+ col1, col2 = st.columns([3, 1])
240
+ with col1:
241
+ st.info(t_stamp)
242
+ with col2:
243
+ if st.button("Load/Reset Data", key='reset1'):
244
+ st.cache_data.clear()
245
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
246
+ salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
247
+ id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
248
+ salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
249
+ id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
250
+ dk_lineups = pd.DataFrame(columns=dk_columns)
251
+ dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
252
+ fd_lineups = pd.DataFrame(columns=fd_columns)
253
+ fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
254
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
255
+ for key in st.session_state.keys():
256
+ del st.session_state[key]
257
+ col1, col2, col3, col4, col5 = st.columns(5)
258
  with col1:
259
  view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
260
  with col2:
261
+ slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
262
+ with col3:
263
  site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
264
 
265
  # Process site selection
266
  if site_var2 == 'Draftkings':
267
+ if slate_type_var2 == 'Regular':
268
+ site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
269
+ elif slate_type_var2 == 'Showdown':
270
+ site_baselines = sd_raw[sd_raw['site'] == 'Draftkings']
271
  elif site_var2 == 'Fanduel':
272
+ if slate_type_var2 == 'Regular':
273
+ site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
274
+ elif slate_type_var2 == 'Showdown':
275
+ site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
276
+ with col4:
277
+ slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split')
278
 
279
  if slate_split == 'Main Slate':
280
+ if slate_type_var2 == 'Regular':
281
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
282
+ elif slate_type_var2 == 'Showdown':
283
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #1']
284
  elif slate_split == 'Secondary':
285
+ if slate_type_var2 == 'Regular':
286
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
287
+ elif slate_type_var2 == 'Showdown':
288
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
 
 
 
 
 
 
 
 
 
 
 
 
289
 
290
+ with col5:
291
  split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
292
  if split_var2 == 'Specific Games':
293
  team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
 
295
  team_var2 = raw_baselines.Team.values.tolist()
296
 
297
  pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
298
+ col1, col2 = st.columns(2)
299
+ with col1:
300
+ low_salary = st.number_input('Enter Lowest Salary', min_value=300, max_value=15000, value=300, step=100, key='low_salary')
301
+ with col2:
302
+ high_salary = st.number_input('Enter Highest Salary', min_value=300, max_value=25000, value=25000, step=100, key='high_salary')
303
 
304
  display_container_1 = st.empty()
305
  display_dl_container_1 = st.empty()
306
  display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
307
+ display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
308
  if view_var2 == 'Advanced':
309
  display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
310
  'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
 
312
  display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
313
  export_data = display_proj.copy()
314
 
315
+ # display_proj = display_proj.set_index('Player')
316
+ st.session_state.display_proj = display_proj.set_index('Player', drop=True)
 
317
 
318
  with display_container_1:
319
  display_container = st.empty()
 
322
  st.session_state.display_proj = st.session_state.display_proj
323
  elif pos_var2 != 'All':
324
  st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
325
+ st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2),
326
+ height=1000, use_container_width = True)
327
 
328
  with display_dl_container_1:
329
  display_dl_container = st.empty()
 
336
  )
337
 
338
  with tab2:
339
+ with st.expander("Info and Filters"):
 
340
  if st.button("Load/Reset Data", key='reset2'):
341
  st.cache_data.clear()
342
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
343
+ salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
344
+ id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
345
+ salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
346
+ id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID))
347
+ dk_lineups = pd.DataFrame(columns=dk_columns)
348
+ dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns)
349
+ fd_lineups = pd.DataFrame(columns=fd_columns)
350
+ fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns)
351
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
352
  for key in st.session_state.keys():
353
  del st.session_state[key]
354
+
355
+ col1, col2, col3, col4, col5 = st.columns(5)
356
+ with col1:
357
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary'))
358
+ with col2:
359
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
360
+ if 'working_seed' in st.session_state:
361
+ del st.session_state['working_seed']
362
+ with col3:
363
+ slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'))
364
+ with col4:
365
+ lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
366
+ with col5:
367
+ if site_var1 == 'Draftkings':
368
+ if slate_type_var1 == 'Regular':
369
+ column_names = dk_columns
370
+ elif slate_type_var1 == 'Showdown':
371
+ column_names = dk_sd_columns
372
+
373
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
374
+ if player_var1 == 'Specific Players':
375
+ player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
376
+ elif player_var1 == 'Full Slate':
377
+ player_var2 = dk_raw.Player.values.tolist()
378
+
379
+ elif site_var1 == 'Fanduel':
380
+ if slate_type_var1 == 'Regular':
381
+ column_names = fd_columns
382
+ elif slate_type_var1 == 'Showdown':
383
+ column_names = fd_sd_columns
384
+
385
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
386
+ if player_var1 == 'Specific Players':
387
+ player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
388
+ elif player_var1 == 'Full Slate':
389
+ player_var2 = fd_raw.Player.values.tolist()
390
  if st.button("Prepare data export", key='data_export'):
391
  data_export = st.session_state.working_seed.copy()
392
  if site_var1 == 'Draftkings':
 
400
  data=convert_df(data_export),
401
  file_name='NBA_optimals_export.csv',
402
  mime='text/csv',
403
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
 
405
+
406
+ if site_var1 == 'Draftkings':
407
+ if 'working_seed' in st.session_state:
408
+ st.session_state.working_seed = st.session_state.working_seed
409
+ if player_var1 == 'Specific Players':
410
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
411
+ elif player_var1 == 'Full Slate':
 
 
 
412
  st.session_state.working_seed = st.session_state.working_seed
 
 
 
 
413
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
414
 
415
+ elif 'working_seed' not in st.session_state:
416
+ if slate_type_var1 == 'Regular':
417
+ st.session_state.working_seed = init_DK_lineups(slate_var1)
418
+ elif slate_type_var1 == 'Showdown':
419
+ st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
420
+ st.session_state.working_seed = st.session_state.working_seed
421
+ if player_var1 == 'Specific Players':
422
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
423
+ elif player_var1 == 'Full Slate':
424
+ if slate_type_var1 == 'Regular':
425
+ st.session_state.working_seed = init_DK_lineups(slate_var1)
426
+ elif slate_type_var1 == 'Showdown':
427
+ st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
428
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
429
+
430
+ elif site_var1 == 'Fanduel':
431
+ if 'working_seed' in st.session_state:
432
+ st.session_state.working_seed = st.session_state.working_seed
433
+ if player_var1 == 'Specific Players':
434
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
435
+ elif player_var1 == 'Full Slate':
436
+ st.session_state.working_seed = st.session_state.working_seed
437
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
438
+
439
+ elif 'working_seed' not in st.session_state:
440
+ if slate_type_var1 == 'Regular':
441
+ st.session_state.working_seed = init_FD_lineups(slate_var1)
442
+ elif slate_type_var1 == 'Showdown':
443
+ st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
444
+ st.session_state.working_seed = st.session_state.working_seed
445
+ if player_var1 == 'Specific Players':
446
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
447
+ elif player_var1 == 'Full Slate':
448
+ if slate_type_var1 == 'Regular':
449
+ st.session_state.working_seed = init_FD_lineups(slate_var1)
450
+ elif slate_type_var1 == 'Showdown':
451
+ st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
452
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
453
+
454
+ export_file = st.session_state.data_export_display.copy()
455
+ if site_var1 == 'Draftkings':
456
+ if slate_type_var1 == 'Regular':
457
  for col_idx in range(8):
458
  export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
459
+ elif slate_type_var1 == 'Showdown':
460
+ for col_idx in range(5):
461
+ export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd)
462
+ elif site_var1 == 'Fanduel':
463
+ if slate_type_var1 == 'Regular':
464
  for col_idx in range(9):
465
  export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
466
+ elif slate_type_var1 == 'Showdown':
467
+ for col_idx in range(5):
468
+ export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd)
469
+
470
+ with st.container():
471
+ if st.button("Reset Optimals", key='reset3'):
472
+ for key in st.session_state.keys():
473
+ del st.session_state[key]
474
+ if site_var1 == 'Draftkings':
475
+ if slate_type_var1 == 'Regular':
476
  st.session_state.working_seed = dk_lineups.copy()
477
+ elif slate_type_var1 == 'Showdown':
478
+ st.session_state.working_seed = dk_sd_lineups.copy()
479
+ elif site_var1 == 'Fanduel':
480
+ if slate_type_var1 == 'Regular':
481
  st.session_state.working_seed = fd_lineups.copy()
482
+ elif slate_type_var1 == 'Showdown':
483
+ st.session_state.working_seed = fd_sd_lineups.copy()
484
+ if 'data_export_display' in st.session_state:
485
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
486
+ st.download_button(
487
+ label="Export display optimals",
488
+ data=convert_df(export_file),
489
+ file_name='NBA_display_optimals.csv',
490
+ mime='text/csv',
491
+ )
492
+
493
+ with st.container():
494
+ if 'working_seed' in st.session_state:
495
+ # Create a new dataframe with summary statistics
496
+ if site_var1 == 'Draftkings':
497
+ if slate_type_var1 == 'Regular':
498
  summary_df = pd.DataFrame({
499
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
500
  'Salary': [
501
  np.min(st.session_state.working_seed[:,8]),
502
  np.mean(st.session_state.working_seed[:,8]),
 
516
  np.std(st.session_state.working_seed[:,14])
517
  ]
518
  })
519
+ elif slate_type_var1 == 'Showdown':
520
+ summary_df = pd.DataFrame({
521
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
522
+ 'Salary': [
523
+ np.min(st.session_state.working_seed[:,6]),
524
+ np.mean(st.session_state.working_seed[:,6]),
525
+ np.max(st.session_state.working_seed[:,6]),
526
+ np.std(st.session_state.working_seed[:,6])
527
+ ],
528
+ 'Proj': [
529
+ np.min(st.session_state.working_seed[:,7]),
530
+ np.mean(st.session_state.working_seed[:,7]),
531
+ np.max(st.session_state.working_seed[:,7]),
532
+ np.std(st.session_state.working_seed[:,7])
533
+ ],
534
+ 'Own': [
535
+ np.min(st.session_state.working_seed[:,12]),
536
+ np.mean(st.session_state.working_seed[:,12]),
537
+ np.max(st.session_state.working_seed[:,12]),
538
+ np.std(st.session_state.working_seed[:,12])
539
+ ]
540
+ })
541
+
542
+ elif site_var1 == 'Fanduel':
543
+ if slate_type_var1 == 'Regular':
544
  summary_df = pd.DataFrame({
545
  'Metric': ['Min', 'Average', 'Max', 'STDdev'],
546
  'Salary': [
 
562
  np.std(st.session_state.working_seed[:,15])
563
  ]
564
  })
565
+ elif slate_type_var1 == 'Showdown':
566
+ summary_df = pd.DataFrame({
567
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
568
+ 'Salary': [
569
+ np.min(st.session_state.working_seed[:,6]),
570
+ np.mean(st.session_state.working_seed[:,6]),
571
+ np.max(st.session_state.working_seed[:,6]),
572
+ np.std(st.session_state.working_seed[:,6])
573
+ ],
574
+ 'Proj': [
575
+ np.min(st.session_state.working_seed[:,7]),
576
+ np.mean(st.session_state.working_seed[:,7]),
577
+ np.max(st.session_state.working_seed[:,7]),
578
+ np.std(st.session_state.working_seed[:,7])
579
+ ],
580
+ 'Own': [
581
+ np.min(st.session_state.working_seed[:,12]),
582
+ np.mean(st.session_state.working_seed[:,12]),
583
+ np.max(st.session_state.working_seed[:,12]),
584
+ np.std(st.session_state.working_seed[:,12])
585
+ ]
586
+ })
587
 
588
+ # Set the index of the summary dataframe as the "Metric" column
589
+ summary_df = summary_df.set_index('Metric')
590
 
591
+ # Display the summary dataframe
592
+ st.subheader("Optimal Statistics")
593
+ st.dataframe(summary_df.style.format({
594
+ 'Salary': '{:.2f}',
595
+ 'Proj': '{:.2f}',
596
+ 'Own': '{:.2f}'
597
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
598
 
599
+ with st.container():
600
+ tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
601
+ with tab1:
602
+ if 'data_export_display' in st.session_state:
603
+ if slate_type_var1 == 'Regular':
604
  if site_var1 == 'Draftkings':
605
  player_columns = st.session_state.data_export_display.iloc[:, :8]
606
  elif site_var1 == 'Fanduel':
607
  player_columns = st.session_state.data_export_display.iloc[:, :9]
608
+ elif slate_type_var1 == 'Showdown':
609
+ if site_var1 == 'Draftkings':
610
+ player_columns = st.session_state.data_export_display.iloc[:, :5]
611
+ elif site_var1 == 'Fanduel':
612
+ player_columns = st.session_state.data_export_display.iloc[:, :5]
613
+
614
+ # Flatten the DataFrame and count unique values
615
+ value_counts = player_columns.values.flatten().tolist()
616
+ value_counts = pd.Series(value_counts).value_counts()
617
+
618
+ percentages = (value_counts / lineup_num_var * 100).round(2)
 
 
 
 
 
 
 
 
 
 
619
 
620
+ # Create a DataFrame with the results
621
+ summary_df = pd.DataFrame({
622
+ 'Player': value_counts.index,
623
+ 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
624
+ 'Frequency': value_counts.values,
625
+ 'Percentage': percentages.values
626
+ })
627
+
628
+ # Sort by frequency in descending order
629
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
630
+
631
+ # Display the table
632
+ st.write("Player Frequency Table:")
633
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
634
+
635
+ st.download_button(
636
+ label="Export player frequency",
637
+ data=convert_df_to_csv(summary_df),
638
+ file_name='NBA_player_frequency.csv',
639
+ mime='text/csv',
640
+ )
641
+ with tab2:
642
+ if 'working_seed' in st.session_state:
643
+ if slate_type_var1 == 'Regular':
644
  if site_var1 == 'Draftkings':
645
  player_columns = st.session_state.working_seed[:, :8]
646
  elif site_var1 == 'Fanduel':
647
  player_columns = st.session_state.working_seed[:, :9]
648
+ elif slate_type_var1 == 'Showdown':
649
+ if site_var1 == 'Draftkings':
650
+ player_columns = st.session_state.working_seed[:, :5]
651
+ elif site_var1 == 'Fanduel':
652
+ player_columns = st.session_state.working_seed[:, :5]
653
+
654
+ # Flatten the DataFrame and count unique values
655
+ value_counts = player_columns.flatten().tolist()
656
+ value_counts = pd.Series(value_counts).value_counts()
 
 
 
 
 
 
 
 
 
 
 
657
 
658
+ percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
659
+ # Create a DataFrame with the results
660
+ summary_df = pd.DataFrame({
661
+ 'Player': value_counts.index,
662
+ 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
663
+ 'Frequency': value_counts.values,
664
+ 'Percentage': percentages.values
665
+ })
666
+
667
+ # Sort by frequency in descending order
668
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
669
+
670
+ # Display the table
671
+ st.write("Seed Frame Frequency Table:")
672
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
673
+
674
+ st.download_button(
675
+ label="Export seed frame frequency",
676
+ data=convert_df_to_csv(summary_df),
677
+ file_name='NBA_seed_frame_frequency.csv',
678
+ mime='text/csv',
679
+ )