Spaces:
Running
Running
James McCool
commited on
Commit
·
841c7fd
1
Parent(s):
ab2c770
Enhance support for WNBA alongside NBA in data loading and lineup initialization; refactor column management and statistics calculations for both leagues.
Browse files
app.py
CHANGED
@@ -13,109 +13,168 @@ def init_conn():
|
|
13 |
uri = st.secrets['mongo_uri']
|
14 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
15 |
db = client["NBA_DFS"]
|
|
|
16 |
|
17 |
-
return db
|
18 |
|
19 |
-
db = init_conn()
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
27 |
|
28 |
@st.cache_data(ttl=60)
|
29 |
-
def load_overall_stats():
|
30 |
-
|
|
|
|
|
|
|
31 |
cursor = collection.find()
|
32 |
|
33 |
raw_display = pd.DataFrame(list(cursor))
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
38 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
39 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
cursor = collection.find()
|
43 |
|
44 |
raw_display = pd.DataFrame(list(cursor))
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
49 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
50 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
51 |
|
52 |
-
|
|
|
|
|
|
|
53 |
cursor = collection.find()
|
54 |
|
55 |
raw_display = pd.DataFrame(list(cursor))
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
60 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
61 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
62 |
|
63 |
-
|
|
|
|
|
|
|
64 |
cursor = collection.find()
|
65 |
|
66 |
raw_display = pd.DataFrame(list(cursor))
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
71 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
72 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
cursor = collection.find()
|
76 |
|
77 |
raw_display = pd.DataFrame(list(cursor))
|
78 |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
79 |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
|
|
80 |
raw_display = raw_display.rename(columns={"player_id": "player_ID"})
|
81 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
82 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
83 |
sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
|
|
|
|
|
|
|
|
84 |
|
85 |
print(sd_raw.head(10))
|
86 |
|
87 |
-
|
|
|
|
|
|
|
88 |
cursor = collection.find()
|
89 |
|
90 |
raw_display = pd.DataFrame(list(cursor))
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
94 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
95 |
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
96 |
|
97 |
timestamp = raw_display['timestamp'].values[0]
|
98 |
|
99 |
-
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp
|
100 |
|
101 |
@st.cache_data(ttl = 60)
|
102 |
-
def init_DK_lineups(slate_desig: str):
|
103 |
|
104 |
if slate_desig == 'Main Slate':
|
105 |
-
|
|
|
|
|
|
|
106 |
cursor = collection.find()
|
107 |
raw_data = pd.DataFrame(list(cursor))
|
108 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
cursor = collection.find().limit(10000)
|
112 |
elif slate_desig == 'Secondary':
|
113 |
-
|
|
|
|
|
|
|
114 |
cursor = collection.find()
|
115 |
raw_data = pd.DataFrame(list(cursor))
|
116 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
cursor = collection.find().limit(10000)
|
120 |
elif slate_desig == 'Auxiliary':
|
121 |
collection = db['DK_NBA_Auxiliary_name_map']
|
@@ -127,8 +186,13 @@ def init_DK_lineups(slate_desig: str):
|
|
127 |
cursor = collection.find().limit(10000)
|
128 |
|
129 |
raw_display = pd.DataFrame(list(cursor))
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
for col in dict_columns:
|
133 |
raw_display[col] = raw_display[col].map(names_dict)
|
134 |
DK_seed = raw_display.to_numpy()
|
@@ -136,16 +200,22 @@ def init_DK_lineups(slate_desig: str):
|
|
136 |
return DK_seed
|
137 |
|
138 |
@st.cache_data(ttl = 60)
|
139 |
-
def init_DK_SD_lineups(slate_desig: str):
|
140 |
|
141 |
if slate_desig == 'Main Slate':
|
142 |
-
|
|
|
|
|
|
|
143 |
elif slate_desig == 'Secondary':
|
144 |
-
|
|
|
|
|
|
|
145 |
elif slate_desig == 'Auxiliary':
|
146 |
collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
|
147 |
|
148 |
-
cursor = collection.find().limit(10000)
|
149 |
|
150 |
raw_display = pd.DataFrame(list(cursor))
|
151 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -154,23 +224,35 @@ def init_DK_SD_lineups(slate_desig: str):
|
|
154 |
return DK_seed
|
155 |
|
156 |
@st.cache_data(ttl = 60)
|
157 |
-
def init_FD_lineups(slate_desig: str):
|
158 |
|
159 |
if slate_desig == 'Main Slate':
|
160 |
-
|
|
|
|
|
|
|
161 |
cursor = collection.find()
|
162 |
raw_data = pd.DataFrame(list(cursor))
|
163 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
164 |
|
165 |
-
|
|
|
|
|
|
|
166 |
cursor = collection.find().limit(10000)
|
167 |
elif slate_desig == 'Secondary':
|
168 |
-
|
|
|
|
|
|
|
169 |
cursor = collection.find()
|
170 |
raw_data = pd.DataFrame(list(cursor))
|
171 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
172 |
|
173 |
-
|
|
|
|
|
|
|
174 |
cursor = collection.find().limit(10000)
|
175 |
elif slate_desig == 'Auxiliary':
|
176 |
collection = db['FD_NBA_Auxiliary_name_map']
|
@@ -182,8 +264,12 @@ def init_FD_lineups(slate_desig: str):
|
|
182 |
cursor = collection.find().limit(10000)
|
183 |
|
184 |
raw_display = pd.DataFrame(list(cursor))
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
for col in dict_columns:
|
188 |
raw_display[col] = raw_display[col].map(names_dict)
|
189 |
FD_seed = raw_display.to_numpy()
|
@@ -191,16 +277,22 @@ def init_FD_lineups(slate_desig: str):
|
|
191 |
return FD_seed
|
192 |
|
193 |
@st.cache_data(ttl = 60)
|
194 |
-
def init_FD_SD_lineups(slate_desig: str):
|
195 |
|
196 |
if slate_desig == 'Main Slate':
|
197 |
-
|
|
|
|
|
|
|
198 |
elif slate_desig == 'Secondary':
|
199 |
-
|
|
|
|
|
|
|
200 |
elif slate_desig == 'Auxiliary':
|
201 |
collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
|
202 |
|
203 |
-
cursor = collection.find().limit(10000)
|
204 |
|
205 |
raw_display = pd.DataFrame(list(cursor))
|
206 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -216,15 +308,23 @@ def convert_df(array):
|
|
216 |
array = pd.DataFrame(array, columns=column_names)
|
217 |
return array.to_csv().encode('utf-8')
|
218 |
|
219 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
|
220 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
221 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
222 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
229 |
|
230 |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
|
@@ -242,24 +342,33 @@ with tab1:
|
|
242 |
with col2:
|
243 |
if st.button("Load/Reset Data", key='reset1'):
|
244 |
st.cache_data.clear()
|
245 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
|
246 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
247 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
248 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
255 |
for key in st.session_state.keys():
|
256 |
del st.session_state[key]
|
257 |
-
col1, col2, col3, col4, col5 = st.columns(
|
258 |
with col1:
|
259 |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
260 |
with col2:
|
261 |
-
|
|
|
262 |
with col3:
|
|
|
|
|
263 |
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
264 |
|
265 |
# Process site selection
|
@@ -273,7 +382,7 @@ with tab1:
|
|
273 |
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
|
274 |
elif slate_type_var2 == 'Showdown':
|
275 |
site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
|
276 |
-
with
|
277 |
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split')
|
278 |
|
279 |
if slate_split == 'Main Slate':
|
@@ -287,7 +396,7 @@ with tab1:
|
|
287 |
elif slate_type_var2 == 'Showdown':
|
288 |
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
|
289 |
|
290 |
-
with
|
291 |
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
292 |
if split_var2 == 'Specific Games':
|
293 |
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
|
@@ -339,36 +448,50 @@ with tab2:
|
|
339 |
with st.expander("Info and Filters"):
|
340 |
if st.button("Load/Reset Data", key='reset2'):
|
341 |
st.cache_data.clear()
|
342 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats()
|
343 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
344 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
345 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
352 |
for key in st.session_state.keys():
|
353 |
del st.session_state[key]
|
354 |
|
355 |
-
col1, col2, col3, col4, col5 = st.columns(
|
356 |
with col1:
|
357 |
-
|
358 |
with col2:
|
|
|
|
|
359 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
360 |
if 'working_seed' in st.session_state:
|
361 |
del st.session_state['working_seed']
|
362 |
-
with col3:
|
363 |
-
slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'))
|
364 |
with col4:
|
365 |
-
|
366 |
with col5:
|
|
|
|
|
367 |
if site_var1 == 'Draftkings':
|
368 |
-
if
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
374 |
if player_var1 == 'Specific Players':
|
@@ -377,10 +500,16 @@ with tab2:
|
|
377 |
player_var2 = dk_raw.Player.values.tolist()
|
378 |
|
379 |
elif site_var1 == 'Fanduel':
|
380 |
-
if
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
386 |
if player_var1 == 'Specific Players':
|
@@ -388,19 +517,42 @@ with tab2:
|
|
388 |
elif player_var1 == 'Full Slate':
|
389 |
player_var2 = fd_raw.Player.values.tolist()
|
390 |
if st.button("Prepare data export", key='data_export'):
|
391 |
-
|
392 |
if site_var1 == 'Draftkings':
|
393 |
-
|
394 |
-
data_export
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
elif site_var1 == 'Fanduel':
|
396 |
-
|
397 |
-
data_export
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
st.download_button(
|
399 |
-
label="Export optimals
|
400 |
data=convert_df(data_export),
|
401 |
file_name='NBA_optimals_export.csv',
|
402 |
mime='text/csv',
|
403 |
-
|
404 |
|
405 |
|
406 |
if site_var1 == 'Draftkings':
|
@@ -414,17 +566,17 @@ with tab2:
|
|
414 |
|
415 |
elif 'working_seed' not in st.session_state:
|
416 |
if slate_type_var1 == 'Regular':
|
417 |
-
st.session_state.working_seed = init_DK_lineups(slate_var1)
|
418 |
elif slate_type_var1 == 'Showdown':
|
419 |
-
st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
|
420 |
st.session_state.working_seed = st.session_state.working_seed
|
421 |
if player_var1 == 'Specific Players':
|
422 |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
423 |
elif player_var1 == 'Full Slate':
|
424 |
if slate_type_var1 == 'Regular':
|
425 |
-
st.session_state.working_seed = init_DK_lineups(slate_var1)
|
426 |
elif slate_type_var1 == 'Showdown':
|
427 |
-
st.session_state.working_seed = init_DK_SD_lineups(slate_var1)
|
428 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
429 |
|
430 |
elif site_var1 == 'Fanduel':
|
@@ -438,17 +590,17 @@ with tab2:
|
|
438 |
|
439 |
elif 'working_seed' not in st.session_state:
|
440 |
if slate_type_var1 == 'Regular':
|
441 |
-
st.session_state.working_seed = init_FD_lineups(slate_var1)
|
442 |
elif slate_type_var1 == 'Showdown':
|
443 |
-
st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
|
444 |
st.session_state.working_seed = st.session_state.working_seed
|
445 |
if player_var1 == 'Specific Players':
|
446 |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
447 |
elif player_var1 == 'Full Slate':
|
448 |
if slate_type_var1 == 'Regular':
|
449 |
-
st.session_state.working_seed = init_FD_lineups(slate_var1)
|
450 |
elif slate_type_var1 == 'Showdown':
|
451 |
-
st.session_state.working_seed = init_FD_SD_lineups(slate_var1)
|
452 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
453 |
|
454 |
export_file = st.session_state.data_export_display.copy()
|
@@ -457,30 +609,42 @@ with tab2:
|
|
457 |
for col_idx in range(8):
|
458 |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
459 |
elif slate_type_var1 == 'Showdown':
|
460 |
-
for col_idx in range(
|
461 |
-
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(
|
462 |
elif site_var1 == 'Fanduel':
|
463 |
if slate_type_var1 == 'Regular':
|
464 |
for col_idx in range(9):
|
465 |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
466 |
elif slate_type_var1 == 'Showdown':
|
467 |
-
for col_idx in range(
|
468 |
-
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(
|
469 |
|
470 |
with st.container():
|
471 |
if st.button("Reset Optimals", key='reset3'):
|
472 |
for key in st.session_state.keys():
|
473 |
del st.session_state[key]
|
474 |
if site_var1 == 'Draftkings':
|
475 |
-
if
|
476 |
-
|
477 |
-
|
478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
elif site_var1 == 'Fanduel':
|
480 |
-
if
|
481 |
-
|
482 |
-
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
if 'data_export_display' in st.session_state:
|
485 |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
486 |
st.download_button(
|
@@ -494,96 +658,188 @@ with tab2:
|
|
494 |
if 'working_seed' in st.session_state:
|
495 |
# Create a new dataframe with summary statistics
|
496 |
if site_var1 == 'Draftkings':
|
497 |
-
if
|
498 |
-
|
499 |
-
|
500 |
-
'
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
'
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
elif site_var1 == 'Fanduel':
|
543 |
-
if
|
544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
elif
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
|
588 |
# Set the index of the summary dataframe as the "Metric" column
|
589 |
summary_df = summary_df.set_index('Metric')
|
@@ -600,16 +856,29 @@ with tab2:
|
|
600 |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
601 |
with tab1:
|
602 |
if 'data_export_display' in st.session_state:
|
603 |
-
if
|
604 |
-
if
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
# Flatten the DataFrame and count unique values
|
615 |
value_counts = player_columns.values.flatten().tolist()
|
@@ -640,16 +909,28 @@ with tab2:
|
|
640 |
)
|
641 |
with tab2:
|
642 |
if 'working_seed' in st.session_state:
|
643 |
-
if
|
644 |
-
if
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
|
654 |
# Flatten the DataFrame and count unique values
|
655 |
value_counts = player_columns.flatten().tolist()
|
|
|
13 |
uri = st.secrets['mongo_uri']
|
14 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
15 |
db = client["NBA_DFS"]
|
16 |
+
wnba_db = client["WNBA_DFS"]
|
17 |
|
18 |
+
return db, wnba_db
|
19 |
|
20 |
+
db, wnba_db = init_conn()
|
21 |
|
22 |
+
dk_nba_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
+
dk_nba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
24 |
+
fd_nba_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
25 |
+
fd_nba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
26 |
+
|
27 |
+
dk_wnba_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
28 |
+
dk_wnba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
29 |
+
fd_wnba_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
30 |
+
fd_wnba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
31 |
|
32 |
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
33 |
|
34 |
@st.cache_data(ttl=60)
|
35 |
+
def load_overall_stats(league: str):
|
36 |
+
if league == 'NBA':
|
37 |
+
collection = db["DK_Player_Stats"]
|
38 |
+
elif league == 'WNBA':
|
39 |
+
collection = wnba_db["DK_Player_Stats"]
|
40 |
cursor = collection.find()
|
41 |
|
42 |
raw_display = pd.DataFrame(list(cursor))
|
43 |
+
if league == 'NBA':
|
44 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
45 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
46 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
47 |
+
elif league == 'WNBA':
|
48 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
|
49 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
50 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
51 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
52 |
|
53 |
+
if league == 'NBA':
|
54 |
+
collection = db["FD_Player_Stats"]
|
55 |
+
elif league == 'WNBA':
|
56 |
+
collection = wnba_db["FD_Player_Stats"]
|
57 |
cursor = collection.find()
|
58 |
|
59 |
raw_display = pd.DataFrame(list(cursor))
|
60 |
+
if league == 'NBA':
|
61 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
62 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
63 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
64 |
+
elif league == 'WNBA':
|
65 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
|
66 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
67 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
68 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
69 |
|
70 |
+
if league == 'NBA':
|
71 |
+
collection = db["Secondary_DK_Player_Stats"]
|
72 |
+
elif league == 'WNBA':
|
73 |
+
collection = wnba_db["Secondary_DK_Player_Stats"]
|
74 |
cursor = collection.find()
|
75 |
|
76 |
raw_display = pd.DataFrame(list(cursor))
|
77 |
+
if league == 'NBA':
|
78 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
79 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
80 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
81 |
+
elif league == 'WNBA':
|
82 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
|
83 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
84 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
85 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
86 |
|
87 |
+
if league == 'NBA':
|
88 |
+
collection = db["Secondary_FD_Player_Stats"]
|
89 |
+
elif league == 'WNBA':
|
90 |
+
collection = wnba_db["Secondary_FD_Player_Stats"]
|
91 |
cursor = collection.find()
|
92 |
|
93 |
raw_display = pd.DataFrame(list(cursor))
|
94 |
+
if league == 'NBA':
|
95 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
96 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
97 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
98 |
+
elif league == 'WNBA':
|
99 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
|
100 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
101 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
102 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
103 |
|
104 |
+
if league == 'NBA':
|
105 |
+
collection = db["Player_SD_Range_Of_Outcomes"]
|
106 |
+
elif league == 'WNBA':
|
107 |
+
collection = wnba_db["Player_SD_Range_Of_Outcomes"]
|
108 |
cursor = collection.find()
|
109 |
|
110 |
raw_display = pd.DataFrame(list(cursor))
|
111 |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
112 |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
113 |
+
raw_display['Median'] = raw_display['Median'].replace('', 0).astype(float)
|
114 |
raw_display = raw_display.rename(columns={"player_id": "player_ID"})
|
115 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
116 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
117 |
sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
118 |
+
dk_sd_raw = sd_raw[sd_raw['site'] == 'Draftkings']
|
119 |
+
fd_sd_raw = sd_raw[sd_raw['site'] == 'Fanduel']
|
120 |
+
fd_sd_raw['player_ID'] = fd_sd_raw['player_ID'].astype(str)
|
121 |
+
fd_sd_raw['player_ID'] = fd_sd_raw['player_ID'].str.rsplit('-', n=1).str[0].astype(str)
|
122 |
|
123 |
print(sd_raw.head(10))
|
124 |
|
125 |
+
if league == 'NBA':
|
126 |
+
collection = db["Player_Range_Of_Outcomes"]
|
127 |
+
elif league == 'WNBA':
|
128 |
+
collection = wnba_db["Player_Range_Of_Outcomes"]
|
129 |
cursor = collection.find()
|
130 |
|
131 |
raw_display = pd.DataFrame(list(cursor))
|
132 |
+
try:
|
133 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
134 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
|
135 |
+
except:
|
136 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
137 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
138 |
+
raw_display = raw_display.rename(columns={"player_id": "player_ID"})
|
139 |
+
raw_display['Median'] = raw_display['Median'].replace('', 0).astype(float)
|
140 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
141 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
142 |
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
143 |
|
144 |
timestamp = raw_display['timestamp'].values[0]
|
145 |
|
146 |
+
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp
|
147 |
|
148 |
@st.cache_data(ttl = 60)
|
149 |
+
def init_DK_lineups(slate_desig: str, league: str):
|
150 |
|
151 |
if slate_desig == 'Main Slate':
|
152 |
+
if league == 'NBA':
|
153 |
+
collection = db['DK_NBA_name_map']
|
154 |
+
elif league == 'WNBA':
|
155 |
+
collection = wnba_db['DK_WNBA_name_map']
|
156 |
cursor = collection.find()
|
157 |
raw_data = pd.DataFrame(list(cursor))
|
158 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
159 |
+
|
160 |
+
if league == 'NBA':
|
161 |
+
collection = db["DK_NBA_seed_frame"]
|
162 |
+
elif league == 'WNBA':
|
163 |
+
collection = wnba_db["DK_WNBA_seed_frame"]
|
164 |
cursor = collection.find().limit(10000)
|
165 |
elif slate_desig == 'Secondary':
|
166 |
+
if league == 'NBA':
|
167 |
+
collection = db['DK_NBA_Secondary_name_map']
|
168 |
+
elif league == 'WNBA':
|
169 |
+
collection = wnba_db['DK_WNBA_Secondary_name_map']
|
170 |
cursor = collection.find()
|
171 |
raw_data = pd.DataFrame(list(cursor))
|
172 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
173 |
+
|
174 |
+
if league == 'NBA':
|
175 |
+
collection = db["DK_NBA_Secondary_seed_frame"]
|
176 |
+
elif league == 'WNBA':
|
177 |
+
collection = wnba_db["DK_WNBA_Secondary_seed_frame"]
|
178 |
cursor = collection.find().limit(10000)
|
179 |
elif slate_desig == 'Auxiliary':
|
180 |
collection = db['DK_NBA_Auxiliary_name_map']
|
|
|
186 |
cursor = collection.find().limit(10000)
|
187 |
|
188 |
raw_display = pd.DataFrame(list(cursor))
|
189 |
+
if league == 'NBA':
|
190 |
+
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
191 |
+
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
192 |
+
elif league == 'WNBA':
|
193 |
+
raw_display = raw_display[['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
194 |
+
dict_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
|
195 |
+
|
196 |
for col in dict_columns:
|
197 |
raw_display[col] = raw_display[col].map(names_dict)
|
198 |
DK_seed = raw_display.to_numpy()
|
|
|
200 |
return DK_seed
|
201 |
|
202 |
@st.cache_data(ttl = 60)
|
203 |
+
def init_DK_SD_lineups(slate_desig: str, league: str):
|
204 |
|
205 |
if slate_desig == 'Main Slate':
|
206 |
+
if league == 'NBA':
|
207 |
+
collection = db["DK_NBA_SD_seed_frame"]
|
208 |
+
elif league == 'WNBA':
|
209 |
+
collection = wnba_db["DK_WNBA_SD_seed_frame"]
|
210 |
elif slate_desig == 'Secondary':
|
211 |
+
if league == 'NBA':
|
212 |
+
collection = db["DK_NBA_Secondary_SD_seed_frame"]
|
213 |
+
elif league == 'WNBA':
|
214 |
+
collection = wnba_db["DK_WNBA_Secondary_SD_seed_frame"]
|
215 |
elif slate_desig == 'Auxiliary':
|
216 |
collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
|
217 |
|
218 |
+
cursor = collection.find({"Team_count": {"$lt": 6}}).limit(10000)
|
219 |
|
220 |
raw_display = pd.DataFrame(list(cursor))
|
221 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
224 |
return DK_seed
|
225 |
|
226 |
@st.cache_data(ttl = 60)
|
227 |
+
def init_FD_lineups(slate_desig: str, league: str):
|
228 |
|
229 |
if slate_desig == 'Main Slate':
|
230 |
+
if league == 'NBA':
|
231 |
+
collection = db['FD_NBA_name_map']
|
232 |
+
elif league == 'WNBA':
|
233 |
+
collection = wnba_db['FD_WNBA_name_map']
|
234 |
cursor = collection.find()
|
235 |
raw_data = pd.DataFrame(list(cursor))
|
236 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
237 |
|
238 |
+
if league == 'NBA':
|
239 |
+
collection = db["FD_NBA_seed_frame"]
|
240 |
+
elif league == 'WNBA':
|
241 |
+
collection = wnba_db["FD_WNBA_seed_frame"]
|
242 |
cursor = collection.find().limit(10000)
|
243 |
elif slate_desig == 'Secondary':
|
244 |
+
if league == 'NBA':
|
245 |
+
collection = db['FD_NBA_Secondary_name_map']
|
246 |
+
elif league == 'WNBA':
|
247 |
+
collection = wnba_db['FD_WNBA_Secondary_name_map']
|
248 |
cursor = collection.find()
|
249 |
raw_data = pd.DataFrame(list(cursor))
|
250 |
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
251 |
|
252 |
+
if league == 'NBA':
|
253 |
+
collection = db["FD_NBA_Secondary_seed_frame"]
|
254 |
+
elif league == 'WNBA':
|
255 |
+
collection = wnba_db["FD_WNBA_Secondary_seed_frame"]
|
256 |
cursor = collection.find().limit(10000)
|
257 |
elif slate_desig == 'Auxiliary':
|
258 |
collection = db['FD_NBA_Auxiliary_name_map']
|
|
|
264 |
cursor = collection.find().limit(10000)
|
265 |
|
266 |
raw_display = pd.DataFrame(list(cursor))
|
267 |
+
if league == 'NBA':
|
268 |
+
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
269 |
+
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
270 |
+
elif league == 'WNBA':
|
271 |
+
raw_display = raw_display[['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
272 |
+
dict_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
|
273 |
for col in dict_columns:
|
274 |
raw_display[col] = raw_display[col].map(names_dict)
|
275 |
FD_seed = raw_display.to_numpy()
|
|
|
277 |
return FD_seed
|
278 |
|
279 |
@st.cache_data(ttl = 60)
|
280 |
+
def init_FD_SD_lineups(slate_desig: str, league: str):
|
281 |
|
282 |
if slate_desig == 'Main Slate':
|
283 |
+
if league == 'NBA':
|
284 |
+
collection = db["FD_NBA_SD_seed_frame"]
|
285 |
+
elif league == 'WNBA':
|
286 |
+
collection = wnba_db["FD_WNBA_SD_seed_frame"]
|
287 |
elif slate_desig == 'Secondary':
|
288 |
+
if league == 'NBA':
|
289 |
+
collection = db["FD_NBA_Secondary_SD_seed_frame"]
|
290 |
+
elif league == 'WNBA':
|
291 |
+
collection = wnba_db["FD_WNBA_Secondary_SD_seed_frame"]
|
292 |
elif slate_desig == 'Auxiliary':
|
293 |
collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
|
294 |
|
295 |
+
cursor = collection.find({"Team_count": {"$lt": 6}}).limit(10000)
|
296 |
|
297 |
raw_display = pd.DataFrame(list(cursor))
|
298 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
308 |
array = pd.DataFrame(array, columns=column_names)
|
309 |
return array.to_csv().encode('utf-8')
|
310 |
|
311 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
312 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
313 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
314 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
315 |
+
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
|
316 |
+
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
|
317 |
+
|
318 |
+
dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
|
319 |
+
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
|
320 |
+
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
|
321 |
+
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
|
322 |
+
|
323 |
+
dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
|
324 |
+
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
|
325 |
+
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
|
326 |
+
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
327 |
+
|
328 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
329 |
|
330 |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
|
|
|
342 |
with col2:
|
343 |
if st.button("Load/Reset Data", key='reset1'):
|
344 |
st.cache_data.clear()
|
345 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
346 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
347 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
348 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
349 |
+
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
|
350 |
+
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
|
351 |
+
dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
|
352 |
+
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
|
353 |
+
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
|
354 |
+
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
|
355 |
+
|
356 |
+
dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
|
357 |
+
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
|
358 |
+
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
|
359 |
+
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
360 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
361 |
for key in st.session_state.keys():
|
362 |
del st.session_state[key]
|
363 |
+
col1, col2, col3, col4, col5, col6 = st.columns(6)
|
364 |
with col1:
|
365 |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
366 |
with col2:
|
367 |
+
league_var = st.radio("What League to load:", ('NBA', 'WNBA'), key='league_var')
|
368 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
369 |
with col3:
|
370 |
+
slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
|
371 |
+
with col4:
|
372 |
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
373 |
|
374 |
# Process site selection
|
|
|
382 |
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
|
383 |
elif slate_type_var2 == 'Showdown':
|
384 |
site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
|
385 |
+
with col5:
|
386 |
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split')
|
387 |
|
388 |
if slate_split == 'Main Slate':
|
|
|
396 |
elif slate_type_var2 == 'Showdown':
|
397 |
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
|
398 |
|
399 |
+
with col6:
|
400 |
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
401 |
if split_var2 == 'Specific Games':
|
402 |
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
|
|
|
448 |
with st.expander("Info and Filters"):
|
449 |
if st.button("Load/Reset Data", key='reset2'):
|
450 |
st.cache_data.clear()
|
451 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
452 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
453 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
454 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
455 |
+
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
|
456 |
+
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
|
457 |
+
dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
|
458 |
+
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
|
459 |
+
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
|
460 |
+
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
|
461 |
+
|
462 |
+
dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
|
463 |
+
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
|
464 |
+
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
|
465 |
+
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
466 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
467 |
for key in st.session_state.keys():
|
468 |
del st.session_state[key]
|
469 |
|
470 |
+
col1, col2, col3, col4, col5, col6 = st.columns(6)
|
471 |
with col1:
|
472 |
+
league_var2 = st.radio("What League to load:", ('NBA', 'WNBA'), key='league_var2')
|
473 |
with col2:
|
474 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary'))
|
475 |
+
with col3:
|
476 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
477 |
if 'working_seed' in st.session_state:
|
478 |
del st.session_state['working_seed']
|
|
|
|
|
479 |
with col4:
|
480 |
+
slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'))
|
481 |
with col5:
|
482 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
483 |
+
with col6:
|
484 |
if site_var1 == 'Draftkings':
|
485 |
+
if league_var2 == 'NBA':
|
486 |
+
if slate_type_var1 == 'Regular':
|
487 |
+
column_names = dk_nba_columns
|
488 |
+
elif slate_type_var1 == 'Showdown':
|
489 |
+
column_names = dk_nba_sd_columns
|
490 |
+
elif league_var2 == 'WNBA':
|
491 |
+
if slate_type_var1 == 'Regular':
|
492 |
+
column_names = dk_wnba_columns
|
493 |
+
elif slate_type_var1 == 'Showdown':
|
494 |
+
column_names = dk_wnba_sd_columns
|
495 |
|
496 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
497 |
if player_var1 == 'Specific Players':
|
|
|
500 |
player_var2 = dk_raw.Player.values.tolist()
|
501 |
|
502 |
elif site_var1 == 'Fanduel':
|
503 |
+
if league_var2 == 'NBA':
|
504 |
+
if slate_type_var1 == 'Regular':
|
505 |
+
column_names = fd_nba_columns
|
506 |
+
elif slate_type_var1 == 'Showdown':
|
507 |
+
column_names = fd_nba_sd_columns
|
508 |
+
elif league_var2 == 'WNBA':
|
509 |
+
if slate_type_var1 == 'Regular':
|
510 |
+
column_names = fd_wnba_columns
|
511 |
+
elif slate_type_var1 == 'Showdown':
|
512 |
+
column_names = fd_wnba_sd_columns
|
513 |
|
514 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
515 |
if player_var1 == 'Specific Players':
|
|
|
517 |
elif player_var1 == 'Full Slate':
|
518 |
player_var2 = fd_raw.Player.values.tolist()
|
519 |
if st.button("Prepare data export", key='data_export'):
|
520 |
+
|
521 |
if site_var1 == 'Draftkings':
|
522 |
+
if slate_type_var1 == 'Regular':
|
523 |
+
data_export = init_DK_lineups(slate_var1, league_var2)
|
524 |
+
data_export_names = data_export.copy()
|
525 |
+
for col_idx in range(8):
|
526 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
527 |
+
elif slate_type_var1 == 'Showdown':
|
528 |
+
data_export = init_DK_SD_lineups(slate_var1, league_var2)
|
529 |
+
data_export_names = data_export.copy()
|
530 |
+
for col_idx in range(6):
|
531 |
+
data_export[:, col_idx] = np.array([dk_id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
|
532 |
+
|
533 |
elif site_var1 == 'Fanduel':
|
534 |
+
if slate_type_var1 == 'Regular':
|
535 |
+
data_export = init_FD_lineups(slate_var1, league_var2)
|
536 |
+
data_export_names = data_export.copy()
|
537 |
+
for col_idx in range(9):
|
538 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
539 |
+
elif slate_type_var1 == 'Showdown':
|
540 |
+
data_export = init_FD_SD_lineups(slate_var1, league_var2)
|
541 |
+
data_export_names = data_export.copy()
|
542 |
+
for col_idx in range(6):
|
543 |
+
data_export[:, col_idx] = np.array([fd_id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
|
544 |
+
st.download_button(
|
545 |
+
label="Export optimals (Names)",
|
546 |
+
data=convert_df(data_export_names),
|
547 |
+
file_name='NBA_optimals_export.csv',
|
548 |
+
mime='text/csv',
|
549 |
+
)
|
550 |
st.download_button(
|
551 |
+
label="Export optimals (IDs)",
|
552 |
data=convert_df(data_export),
|
553 |
file_name='NBA_optimals_export.csv',
|
554 |
mime='text/csv',
|
555 |
+
)
|
556 |
|
557 |
|
558 |
if site_var1 == 'Draftkings':
|
|
|
566 |
|
567 |
elif 'working_seed' not in st.session_state:
|
568 |
if slate_type_var1 == 'Regular':
|
569 |
+
st.session_state.working_seed = init_DK_lineups(slate_var1, league_var2)
|
570 |
elif slate_type_var1 == 'Showdown':
|
571 |
+
st.session_state.working_seed = init_DK_SD_lineups(slate_var1, league_var2)
|
572 |
st.session_state.working_seed = st.session_state.working_seed
|
573 |
if player_var1 == 'Specific Players':
|
574 |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
575 |
elif player_var1 == 'Full Slate':
|
576 |
if slate_type_var1 == 'Regular':
|
577 |
+
st.session_state.working_seed = init_DK_lineups(slate_var1, league_var2)
|
578 |
elif slate_type_var1 == 'Showdown':
|
579 |
+
st.session_state.working_seed = init_DK_SD_lineups(slate_var1, league_var2)
|
580 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
581 |
|
582 |
elif site_var1 == 'Fanduel':
|
|
|
590 |
|
591 |
elif 'working_seed' not in st.session_state:
|
592 |
if slate_type_var1 == 'Regular':
|
593 |
+
st.session_state.working_seed = init_FD_lineups(slate_var1, league_var2)
|
594 |
elif slate_type_var1 == 'Showdown':
|
595 |
+
st.session_state.working_seed = init_FD_SD_lineups(slate_var1, league_var2)
|
596 |
st.session_state.working_seed = st.session_state.working_seed
|
597 |
if player_var1 == 'Specific Players':
|
598 |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
599 |
elif player_var1 == 'Full Slate':
|
600 |
if slate_type_var1 == 'Regular':
|
601 |
+
st.session_state.working_seed = init_FD_lineups(slate_var1, league_var2)
|
602 |
elif slate_type_var1 == 'Showdown':
|
603 |
+
st.session_state.working_seed = init_FD_SD_lineups(slate_var1, league_var2)
|
604 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
605 |
|
606 |
export_file = st.session_state.data_export_display.copy()
|
|
|
609 |
for col_idx in range(8):
|
610 |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
611 |
elif slate_type_var1 == 'Showdown':
|
612 |
+
for col_idx in range(6):
|
613 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(dk_id_dict_sd)
|
614 |
elif site_var1 == 'Fanduel':
|
615 |
if slate_type_var1 == 'Regular':
|
616 |
for col_idx in range(9):
|
617 |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
618 |
elif slate_type_var1 == 'Showdown':
|
619 |
+
for col_idx in range(6):
|
620 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(fd_id_dict_sd)
|
621 |
|
622 |
with st.container():
|
623 |
if st.button("Reset Optimals", key='reset3'):
|
624 |
for key in st.session_state.keys():
|
625 |
del st.session_state[key]
|
626 |
if site_var1 == 'Draftkings':
|
627 |
+
if league_var2 == 'NBA':
|
628 |
+
if slate_type_var1 == 'Regular':
|
629 |
+
st.session_state.working_seed = dk_nba_lineups.copy()
|
630 |
+
elif slate_type_var1 == 'Showdown':
|
631 |
+
st.session_state.working_seed = dk_nba_sd_lineups.copy()
|
632 |
+
elif league_var2 == 'WNBA':
|
633 |
+
if slate_type_var1 == 'Regular':
|
634 |
+
st.session_state.working_seed = dk_wnba_lineups.copy()
|
635 |
+
elif slate_type_var1 == 'Showdown':
|
636 |
+
st.session_state.working_seed = dk_wnba_sd_lineups.copy()
|
637 |
elif site_var1 == 'Fanduel':
|
638 |
+
if league_var2 == 'NBA':
|
639 |
+
if slate_type_var1 == 'Regular':
|
640 |
+
st.session_state.working_seed = fd_nba_lineups.copy()
|
641 |
+
elif slate_type_var1 == 'Showdown':
|
642 |
+
st.session_state.working_seed = fd_nba_sd_lineups.copy()
|
643 |
+
elif league_var2 == 'WNBA':
|
644 |
+
if slate_type_var1 == 'Regular':
|
645 |
+
st.session_state.working_seed = fd_wnba_lineups.copy()
|
646 |
+
elif slate_type_var1 == 'Showdown':
|
647 |
+
st.session_state.working_seed = fd_wnba_sd_lineups.copy()
|
648 |
if 'data_export_display' in st.session_state:
|
649 |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
650 |
st.download_button(
|
|
|
658 |
if 'working_seed' in st.session_state:
|
659 |
# Create a new dataframe with summary statistics
|
660 |
if site_var1 == 'Draftkings':
|
661 |
+
if league_var2 == 'NBA':
|
662 |
+
if slate_type_var1 == 'Regular':
|
663 |
+
summary_df = pd.DataFrame({
|
664 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
665 |
+
'Salary': [
|
666 |
+
np.min(st.session_state.working_seed[:,8]),
|
667 |
+
np.mean(st.session_state.working_seed[:,8]),
|
668 |
+
np.max(st.session_state.working_seed[:,8]),
|
669 |
+
np.std(st.session_state.working_seed[:,8])
|
670 |
+
],
|
671 |
+
'Proj': [
|
672 |
+
np.min(st.session_state.working_seed[:,9]),
|
673 |
+
np.mean(st.session_state.working_seed[:,9]),
|
674 |
+
np.max(st.session_state.working_seed[:,9]),
|
675 |
+
np.std(st.session_state.working_seed[:,9])
|
676 |
+
],
|
677 |
+
'Own': [
|
678 |
+
np.min(st.session_state.working_seed[:,14]),
|
679 |
+
np.mean(st.session_state.working_seed[:,14]),
|
680 |
+
np.max(st.session_state.working_seed[:,14]),
|
681 |
+
np.std(st.session_state.working_seed[:,14])
|
682 |
+
]
|
683 |
+
})
|
684 |
+
elif slate_type_var1 == 'Showdown':
|
685 |
+
summary_df = pd.DataFrame({
|
686 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
687 |
+
'Salary': [
|
688 |
+
np.min(st.session_state.working_seed[:,6]),
|
689 |
+
np.mean(st.session_state.working_seed[:,6]),
|
690 |
+
np.max(st.session_state.working_seed[:,6]),
|
691 |
+
np.std(st.session_state.working_seed[:,6])
|
692 |
+
],
|
693 |
+
'Proj': [
|
694 |
+
np.min(st.session_state.working_seed[:,7]),
|
695 |
+
np.mean(st.session_state.working_seed[:,7]),
|
696 |
+
np.max(st.session_state.working_seed[:,7]),
|
697 |
+
np.std(st.session_state.working_seed[:,7])
|
698 |
+
],
|
699 |
+
'Own': [
|
700 |
+
np.min(st.session_state.working_seed[:,12]),
|
701 |
+
np.mean(st.session_state.working_seed[:,12]),
|
702 |
+
np.max(st.session_state.working_seed[:,12]),
|
703 |
+
np.std(st.session_state.working_seed[:,12])
|
704 |
+
]
|
705 |
+
})
|
706 |
+
elif league_var2 == 'WNBA':
|
707 |
+
if slate_type_var1 == 'Regular':
|
708 |
+
summary_df = pd.DataFrame({
|
709 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
710 |
+
'Salary': [
|
711 |
+
np.min(st.session_state.working_seed[:,6]),
|
712 |
+
np.mean(st.session_state.working_seed[:,6]),
|
713 |
+
np.max(st.session_state.working_seed[:,6]),
|
714 |
+
np.std(st.session_state.working_seed[:,6])
|
715 |
+
],
|
716 |
+
'Proj': [
|
717 |
+
np.min(st.session_state.working_seed[:,7]),
|
718 |
+
np.mean(st.session_state.working_seed[:,7]),
|
719 |
+
np.max(st.session_state.working_seed[:,7]),
|
720 |
+
np.std(st.session_state.working_seed[:,7])
|
721 |
+
],
|
722 |
+
'Own': [
|
723 |
+
np.min(st.session_state.working_seed[:,12]),
|
724 |
+
np.mean(st.session_state.working_seed[:,12]),
|
725 |
+
np.max(st.session_state.working_seed[:,12]),
|
726 |
+
np.std(st.session_state.working_seed[:,12])
|
727 |
+
]
|
728 |
+
})
|
729 |
+
elif slate_type_var1 == 'Showdown':
|
730 |
+
summary_df = pd.DataFrame({
|
731 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
732 |
+
'Salary': [
|
733 |
+
np.min(st.session_state.working_seed[:,6]),
|
734 |
+
np.mean(st.session_state.working_seed[:,6]),
|
735 |
+
np.max(st.session_state.working_seed[:,6]),
|
736 |
+
np.std(st.session_state.working_seed[:,6])
|
737 |
+
],
|
738 |
+
'Proj': [
|
739 |
+
np.min(st.session_state.working_seed[:,7]),
|
740 |
+
np.mean(st.session_state.working_seed[:,7]),
|
741 |
+
np.max(st.session_state.working_seed[:,7]),
|
742 |
+
np.std(st.session_state.working_seed[:,7])
|
743 |
+
],
|
744 |
+
'Own': [
|
745 |
+
np.min(st.session_state.working_seed[:,12]),
|
746 |
+
np.mean(st.session_state.working_seed[:,12]),
|
747 |
+
np.max(st.session_state.working_seed[:,12]),
|
748 |
+
np.std(st.session_state.working_seed[:,12])
|
749 |
+
]
|
750 |
+
})
|
751 |
|
752 |
elif site_var1 == 'Fanduel':
|
753 |
+
if league_var2 == 'NBA':
|
754 |
+
if slate_type_var1 == 'Regular':
|
755 |
+
summary_df = pd.DataFrame({
|
756 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
757 |
+
'Salary': [
|
758 |
+
np.min(st.session_state.working_seed[:,9]),
|
759 |
+
np.mean(st.session_state.working_seed[:,9]),
|
760 |
+
np.max(st.session_state.working_seed[:,9]),
|
761 |
+
np.std(st.session_state.working_seed[:,9])
|
762 |
+
],
|
763 |
+
'Proj': [
|
764 |
+
np.min(st.session_state.working_seed[:,10]),
|
765 |
+
np.mean(st.session_state.working_seed[:,10]),
|
766 |
+
np.max(st.session_state.working_seed[:,10]),
|
767 |
+
np.std(st.session_state.working_seed[:,10])
|
768 |
+
],
|
769 |
+
'Own': [
|
770 |
+
np.min(st.session_state.working_seed[:,15]),
|
771 |
+
np.mean(st.session_state.working_seed[:,15]),
|
772 |
+
np.max(st.session_state.working_seed[:,15]),
|
773 |
+
np.std(st.session_state.working_seed[:,15])
|
774 |
+
]
|
775 |
+
})
|
776 |
+
elif slate_type_var1 == 'Showdown':
|
777 |
+
summary_df = pd.DataFrame({
|
778 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
779 |
+
'Salary': [
|
780 |
+
np.min(st.session_state.working_seed[:,6]),
|
781 |
+
np.mean(st.session_state.working_seed[:,6]),
|
782 |
+
np.max(st.session_state.working_seed[:,6]),
|
783 |
+
np.std(st.session_state.working_seed[:,6])
|
784 |
+
],
|
785 |
+
'Proj': [
|
786 |
+
np.min(st.session_state.working_seed[:,7]),
|
787 |
+
np.mean(st.session_state.working_seed[:,7]),
|
788 |
+
np.max(st.session_state.working_seed[:,7]),
|
789 |
+
np.std(st.session_state.working_seed[:,7])
|
790 |
+
],
|
791 |
+
'Own': [
|
792 |
+
np.min(st.session_state.working_seed[:,12]),
|
793 |
+
np.mean(st.session_state.working_seed[:,12]),
|
794 |
+
np.max(st.session_state.working_seed[:,12]),
|
795 |
+
np.std(st.session_state.working_seed[:,12])
|
796 |
+
]
|
797 |
+
})
|
798 |
+
elif league_var2 == 'WNBA':
|
799 |
+
if slate_type_var1 == 'Regular':
|
800 |
+
summary_df = pd.DataFrame({
|
801 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
802 |
+
'Salary': [
|
803 |
+
np.min(st.session_state.working_seed[:,7]),
|
804 |
+
np.mean(st.session_state.working_seed[:,7]),
|
805 |
+
np.max(st.session_state.working_seed[:,7]),
|
806 |
+
np.std(st.session_state.working_seed[:,7])
|
807 |
+
],
|
808 |
+
'Proj': [
|
809 |
+
np.min(st.session_state.working_seed[:,8]),
|
810 |
+
np.mean(st.session_state.working_seed[:,8]),
|
811 |
+
np.max(st.session_state.working_seed[:,8]),
|
812 |
+
np.std(st.session_state.working_seed[:,8])
|
813 |
+
],
|
814 |
+
'Own': [
|
815 |
+
np.min(st.session_state.working_seed[:,13]),
|
816 |
+
np.mean(st.session_state.working_seed[:,13]),
|
817 |
+
np.max(st.session_state.working_seed[:,13]),
|
818 |
+
np.std(st.session_state.working_seed[:,13])
|
819 |
+
]
|
820 |
+
})
|
821 |
+
elif slate_type_var1 == 'Showdown':
|
822 |
+
summary_df = pd.DataFrame({
|
823 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
824 |
+
'Salary': [
|
825 |
+
np.min(st.session_state.working_seed[:,6]),
|
826 |
+
np.mean(st.session_state.working_seed[:,6]),
|
827 |
+
np.max(st.session_state.working_seed[:,6]),
|
828 |
+
np.std(st.session_state.working_seed[:,6])
|
829 |
+
],
|
830 |
+
'Proj': [
|
831 |
+
np.min(st.session_state.working_seed[:,7]),
|
832 |
+
np.mean(st.session_state.working_seed[:,7]),
|
833 |
+
np.max(st.session_state.working_seed[:,7]),
|
834 |
+
np.std(st.session_state.working_seed[:,7])
|
835 |
+
],
|
836 |
+
'Own': [
|
837 |
+
np.min(st.session_state.working_seed[:,12]),
|
838 |
+
np.mean(st.session_state.working_seed[:,12]),
|
839 |
+
np.max(st.session_state.working_seed[:,12]),
|
840 |
+
np.std(st.session_state.working_seed[:,12])
|
841 |
+
]
|
842 |
+
})
|
843 |
|
844 |
# Set the index of the summary dataframe as the "Metric" column
|
845 |
summary_df = summary_df.set_index('Metric')
|
|
|
856 |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
857 |
with tab1:
|
858 |
if 'data_export_display' in st.session_state:
|
859 |
+
if league_var2 == 'NBA':
|
860 |
+
if slate_type_var1 == 'Regular':
|
861 |
+
if site_var1 == 'Draftkings':
|
862 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
863 |
+
elif site_var1 == 'Fanduel':
|
864 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
865 |
+
elif slate_type_var1 == 'Showdown':
|
866 |
+
if site_var1 == 'Draftkings':
|
867 |
+
player_columns = st.session_state.data_export_display.iloc[:, :5]
|
868 |
+
elif site_var1 == 'Fanduel':
|
869 |
+
player_columns = st.session_state.data_export_display.iloc[:, :5]
|
870 |
+
elif league_var2 == 'WNBA':
|
871 |
+
if slate_type_var1 == 'Regular':
|
872 |
+
if site_var1 == 'Draftkings':
|
873 |
+
player_columns = st.session_state.data_export_display.iloc[:, :7]
|
874 |
+
elif site_var1 == 'Fanduel':
|
875 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
876 |
+
elif slate_type_var1 == 'Showdown':
|
877 |
+
if site_var1 == 'Draftkings':
|
878 |
+
player_columns = st.session_state.data_export_display.iloc[:, :5]
|
879 |
+
elif site_var1 == 'Fanduel':
|
880 |
+
player_columns = st.session_state.data_export_display.iloc[:, :5]
|
881 |
+
|
882 |
|
883 |
# Flatten the DataFrame and count unique values
|
884 |
value_counts = player_columns.values.flatten().tolist()
|
|
|
909 |
)
|
910 |
with tab2:
|
911 |
if 'working_seed' in st.session_state:
|
912 |
+
if league_var2 == 'NBA':
|
913 |
+
if slate_type_var1 == 'Regular':
|
914 |
+
if site_var1 == 'Draftkings':
|
915 |
+
player_columns = st.session_state.working_seed[:, :8]
|
916 |
+
elif site_var1 == 'Fanduel':
|
917 |
+
player_columns = st.session_state.working_seed[:, :9]
|
918 |
+
elif slate_type_var1 == 'Showdown':
|
919 |
+
if site_var1 == 'Draftkings':
|
920 |
+
player_columns = st.session_state.working_seed[:, :5]
|
921 |
+
elif site_var1 == 'Fanduel':
|
922 |
+
player_columns = st.session_state.working_seed[:, :5]
|
923 |
+
elif league_var2 == 'WNBA':
|
924 |
+
if slate_type_var1 == 'Regular':
|
925 |
+
if site_var1 == 'Draftkings':
|
926 |
+
player_columns = st.session_state.working_seed[:, :7]
|
927 |
+
elif site_var1 == 'Fanduel':
|
928 |
+
player_columns = st.session_state.working_seed[:, :8]
|
929 |
+
elif slate_type_var1 == 'Showdown':
|
930 |
+
if site_var1 == 'Draftkings':
|
931 |
+
player_columns = st.session_state.working_seed[:, :5]
|
932 |
+
elif site_var1 == 'Fanduel':
|
933 |
+
player_columns = st.session_state.working_seed[:, :5]
|
934 |
|
935 |
# Flatten the DataFrame and count unique values
|
936 |
value_counts = player_columns.flatten().tolist()
|