File size: 8,282 Bytes
69200bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import pulp
import numpy as np
import pandas as pd
import streamlit as st
import pymongo
from itertools import combinations

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NHL_Database"]

        return db
    
db = init_conn()

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}'}

@st.cache_resource(ttl=200)
def player_stat_table():
    collection = db["Player_Level_ROO"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)
    player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
                                 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]

    collection = db["Player_Lines_ROO"] 
    cursor = collection.find()
    line_frame = pd.DataFrame(cursor)
    line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    collection = db["Player_Powerplay_ROO"] 
    cursor = collection.find()
    pp_frame = pd.DataFrame(cursor)
    pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    timestamp = player_frame['timestamp'].values[0]

    return player_frame, line_frame, pp_frame, timestamp

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])

with tab1:
    col1, col2 = st.columns([1, 7])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              player_frame, line_frame, pp_frame, timestamp = player_stat_table()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
        main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1')
        split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = player_frame.Team.values.tolist()
        pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
        if pos_split1 == 'Specific Positions':
            pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G'])
        elif pos_split1 == 'All Positions':
            pos_var1 = 'All'
        sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1')
    
    with col2:
        final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
        final_Proj = final_Proj[final_Proj['Type'] == 'Basic']
        final_Proj = final_Proj[final_Proj['Slate'] == main_var1]
        final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
        final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
        final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
        if pos_var1 != 'All':
               final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
               final_Proj = final_Proj.sort_values(by='Median', ascending=False)
        if pos_var1 == 'All':
               final_Proj = final_Proj.sort_values(by='Median', ascending=False)
        st.dataframe(final_Proj.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
        st.download_button(
              label="Export Tables",
              data=convert_df_to_csv(final_Proj),
              file_name='NHL_player_export.csv',
              mime='text/csv',
        )

with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              player_frame, line_frame, pp_frame, timestamp = player_stat_table()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
        main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2')
        sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2')
    
    with col2:
        final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
        final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic']
        final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2]
        final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]]
        final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]]
        final_line_combos = final_line_combos.drop_duplicates(subset=['Player'])
        final_line_combos = final_line_combos.sort_values(by='Median', ascending=False)
        st.dataframe(final_line_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        st.download_button(
              label="Export Tables",
              data=convert_df_to_csv(final_line_combos),
              file_name='NHL_linecombos_export.csv',
              mime='text/csv',
        )

with tab3:
    col1, col2 = st.columns([1, 7])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset3'):
              st.cache_data.clear()
              player_frame, line_frame, pp_frame, timestamp = player_stat_table()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
        main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3')
        sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3')
    
    with col2:
        final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
        final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic']
        final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3]
        final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]]
        final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]]
        final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player'])
        final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False)
        st.dataframe(final_pp_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        st.download_button(
              label="Export Tables",
              data=convert_df_to_csv(final_pp_combos),
              file_name='NHL_powerplay_export.csv',
              mime='text/csv',
        )