File size: 4,039 Bytes
edec17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8304bb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""

OpenAI GPT Implementation

"""
import os
import openai
from typing import Dict, List, Any
from .llm_interface import LLMInterface
from utils.logger import log_info, log_error, log_warning, log_debug, LogTimer

DEFAULT_LLM_TIMEOUT = int(os.getenv("LLM_TIMEOUT_SECONDS", "60"))
MAX_RESPONSE_LENGTH = 4096  # Max response length

class OpenAILLM(LLMInterface):
    """OpenAI GPT integration with improved error handling"""

    def __init__(self, api_key: str, model: str = "gpt-4", settings: Dict[str, Any] = None):
        super().__init__(settings)
        self.api_key = api_key
        self.model = model
        self.timeout = self.settings.get("timeout", DEFAULT_LLM_TIMEOUT)
        openai.api_key = api_key
        log_info(f"πŸ”Œ OpenAI LLM initialized", model=self.model, timeout=self.timeout)

    async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
        """Generate response with consistent error handling"""

        # Build messages
        messages = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})

        # Add context
        for msg in context[-10:]:  # Last 10 messages
            role = "assistant" if msg.get("role") == "assistant" else "user"
            messages.append({"role": role, "content": msg.get("content", "")})

        # Add current input
        messages.append({"role": "user", "content": user_input})

        try:
            with LogTimer(f"OpenAI {self.model} request"):
                # Use async client
                client = openai.AsyncOpenAI(
                    api_key=self.api_key,
                    timeout=self.timeout
                )

                response = await client.chat.completions.create(
                    model=self.model,
                    messages=messages,
                    max_tokens=self.settings.get("max_tokens", 2048),
                    temperature=self.settings.get("temperature", 0.7),
                    stream=False
                )

                # Extract content
                content = response.choices[0].message.content

                # Check length
                if len(content) > MAX_RESPONSE_LENGTH:
                    log_warning(f"Response exceeded max length, truncating",
                              original_length=len(content),
                              max_length=MAX_RESPONSE_LENGTH)
                    content = content[:MAX_RESPONSE_LENGTH] + "..."

                # Log token usage
                if response.usage:
                    log_info(f"Token usage",
                           prompt_tokens=response.usage.prompt_tokens,
                           completion_tokens=response.usage.completion_tokens,
                           total_tokens=response.usage.total_tokens)

                return content

        except openai.RateLimitError as e:
            log_warning("OpenAI rate limit", error=str(e))
            raise
        except openai.APITimeoutError as e:
            log_error("OpenAI timeout", error=str(e))
            raise
        except openai.APIError as e:
            log_error("OpenAI API error",
                     status_code=e.status_code if hasattr(e, 'status_code') else None,
                     error=str(e))
            raise
        except Exception as e:
            log_error("OpenAI unexpected error", error=str(e))
            raise

    async def startup(self, project_config: Dict) -> bool:
        """OpenAI doesn't need startup"""
        log_info("OpenAI startup called (no-op)")
        return True

    def get_provider_name(self) -> str:
        return f"openai-{self.model}"

    def get_model_info(self) -> Dict[str, Any]:
        return {
            "provider": "openai",
            "model": self.model,
            "max_tokens": self.settings.get("max_tokens", 2048),
            "temperature": self.settings.get("temperature", 0.7)
        }