File size: 57,730 Bytes
b9756ef 4596ac3 bfee845 b9756ef bfee845 ea0c3e1 4596ac3 04c4d5a 4596ac3 0634f1a 9d5f183 4596ac3 0634f1a 4596ac3 0634f1a 4596ac3 0634f1a 4596ac3 0634f1a 4596ac3 0634f1a ea0c3e1 0634f1a 7c7cb71 ea0c3e1 4596ac3 b9756ef bfee845 b9756ef 0634f1a b9756ef 7c7cb71 b9756ef bfee845 b9756ef 2e6a585 b9756ef bfee845 b9756ef bfee845 ea0c3e1 7c7cb71 0634f1a bfee845 7c7cb71 0634f1a ae4713f 0634f1a bfee845 7c7cb71 0634f1a bfee845 0634f1a ea0c3e1 bfee845 0634f1a bfee845 0634f1a b9756ef 0634f1a b9756ef 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a bfee845 b9756ef 0634f1a bfee845 0634f1a ed1ba16 0634f1a bfee845 0634f1a bfee845 b9756ef bfee845 0634f1a bfee845 0634f1a bfee845 0634f1a ae4713f 0634f1a ed1ba16 0634f1a bfee845 0634f1a 7c7cb71 b9756ef bfee845 0634f1a b9756ef 0634f1a ea0c3e1 b9756ef bfee845 0634f1a b9756ef 0634f1a bfee845 0634f1a b9756ef bfee845 0634f1a bfee845 4596ac3 7c7cb71 0634f1a 9d5f183 0634f1a 9d5f183 0634f1a 3c24aff 0634f1a 3c24aff 56f099b 408ac65 bfee845 d55a911 408ac65 ae4713f 0634f1a ae4713f 3c24aff ae4713f bfee845 0634f1a d55a911 56f099b 0634f1a 408ac65 0634f1a 9d5f183 4596ac3 b9756ef 0634f1a 747d3ab 0634f1a 2e6a585 0634f1a 408ac65 ae4713f 408ac65 d55a911 0634f1a 229dc0f 4c5479b 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f 3c24aff 229dc0f 408ac65 e1f5782 229dc0f 408ac65 229dc0f 3c24aff 229dc0f e1f5782 408ac65 229dc0f e1f5782 229dc0f 408ac65 e1f5782 408ac65 e1f5782 229dc0f 408ac65 e1f5782 408ac65 229dc0f e1f5782 229dc0f 408ac65 e1f5782 229dc0f ed1ba16 e1f5782 229dc0f e1f5782 229dc0f ed1ba16 229dc0f 408ac65 e1f5782 229dc0f 408ac65 e1f5782 229dc0f 3c24aff e1f5782 229dc0f c9550de 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f 3c24aff 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 408ac65 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f 3c24aff e1f5782 4596ac3 229dc0f 07e3330 e1f5782 3c24aff 229dc0f 408ac65 e1f5782 229dc0f 4596ac3 2e6a585 e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f e1f5782 229dc0f 4596ac3 229dc0f 4596ac3 229dc0f 4596ac3 229dc0f 408ac65 e1f5782 408ac65 e1f5782 3c8fabc e1f5782 408ac65 4c5479b d894193 e1f5782 56f099b 7c7cb71 e1f5782 ed1ba16 e1f5782 ed1ba16 3c24aff ed1ba16 e1f5782 3c24aff ed1ba16 2e6a585 e1f5782 ed1ba16 3c24aff d55a911 e1f5782 9d5f183 d55a911 ae4713f e1f5782 ed1ba16 3c24aff ed1ba16 e1f5782 3c24aff ed1ba16 3c24aff ed1ba16 e1f5782 3c24aff ed1ba16 e1f5782 ed1ba16 3c24aff ed1ba16 e1f5782 ed1ba16 ae4713f e1f5782 ae4713f e1f5782 2e6a585 e1f5782 2e6a585 4596ac3 2e6a585 d55a911 e1f5782 56f099b 4d60153 56f099b e1f5782 3c24aff 56f099b 229d1b2 e1f5782 7c7cb71 e1f5782 4596ac3 7c7cb71 e1f5782 7c7cb71 408ac65 4596ac3 408ac65 e1f5782 7c7cb71 e1f5782 ae4713f 4596ac3 ea0c3e1 0634f1a b9756ef 0634f1a ed5c80c bfee845 4596ac3 0634f1a bfee845 4596ac3 0634f1a 408ac65 2e6a585 0634f1a 2e6a585 4596ac3 2e6a585 4596ac3 4ebf92d 2e6a585 4596ac3 0634f1a bfee845 4ebf92d 4596ac3 4ebf92d bfee845 4596ac3 bfee845 4596ac3 4ebf92d 0634f1a ae4713f 4596ac3 ae4713f b9756ef d55a911 408ac65 0634f1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 |
import os
import logging
import re
import time # Added for time.sleep in placeholder functions
from typing import Dict, List, Optional
from functools import lru_cache
import gradio as gr
import gradio.themes as themes # Import gradio.themes (though not explicitly used in this exact UI, it's a good practice)
# --- Ensure vector_db.py is accessible ---
try:
# Assuming vector_db.py exists in the same directory or is installed
# Placeholder for VectorDatabase if the file is not provided
class VectorDatabase:
def __init__(self, persist_directory: str = "chroma_db"):
self.persist_directory = persist_directory
self.documents = {} # Simulating document storage
self.states = [] # Simulating state storage
logging.info(f"VectorDatabase initialized (placeholder) at {persist_directory}")
def process_and_load_pdf(self, pdf_path: str) -> int:
logging.info(f"Placeholder: Processing and loading PDF '{pdf_path}'...")
# Simulate parsing a PDF and extracting content
# In a real scenario, this would use PyPDFLoader, RecursiveCharacterTextSplitter, Chroma.from_documents
if not self.documents: # Only load once for simulation
self.documents = {
"doc1": "California Civil Code § 1950.5: Security deposit limit is two months' rent. Must be returned within 21 days.",
"doc2": "New York Real Property Law § 235-b: Implied Warranty of Habitability. Landlord must keep premises fit for human habitation.",
"doc3": "Texas Property Code § 92.056: Landlord's duty to repair or remedy. Tenant must give notice and time to repair.",
"doc4": "Florida Statutes § 83.56: Termination of rental agreement. Requires specific notice periods for rent increases or lease termination.",
"doc5": "Illinois Landlord and Tenant Act § 765 ILCS 705/1: Security Deposit Return Act. Landlord must return deposit within 45 days. ",
"doc6": "Washington RCW 59.18.230: Tenant's right to quiet enjoyment. Landlord may not interfere with tenant's privacy.",
"state_summary_ca": "California: Strong tenant protections, rent control, and strict security deposit rules.",
"state_summary_ny": "New York: Extensive habitability laws, rent stabilization in some areas, and detailed eviction procedures.",
"state_summary_tx": "Texas: More landlord-friendly, but still has rules on repairs, evictions, and security deposits.",
"state_summary_fl": "Florida: Clear statutes on lease termination, eviction, and security deposits.",
"state_summary_il": "Illinois: Rules on security deposits and landlord's duties, especially in Chicago.",
"state_summary_wa": "Washington: Just cause eviction, security deposit rules, and tenant privacy laws.",
}
self.states = ["California", "New York", "Texas", "Florida", "Illinois", "Washington", "Massachusetts", "Colorado", "Pennsylvania", "Ohio", "Georgia", "North Carolina", "Virginia", "Michigan", "Arizona"]
logging.info(f"Placeholder: Simulated loading {len(self.documents)} documents and {len(self.states)} states.")
return len(self.states)
def query(self, query_text: str, state: str = None, n_results: int = 5) -> Dict[str, any]:
logging.info(f"Placeholder: Querying DB for '{query_text[:50]}...' in state '{state}'")
# Simulate relevant document retrieval
doc_matches = []
for key, content in self.documents.items():
if state and state.lower() in key.lower() or query_text.lower() in content.lower():
doc_matches.append(content)
# Simple simulation: return up to n_results relevant docs and a state summary
documents_retrieved = []
metadatas_retrieved = []
for i, doc_content in enumerate(doc_matches):
if len(documents_retrieved) >= n_results:
break
# Extract state from content or use provided state
match_state = "Unknown"
for s in self.states:
if s.lower() in doc_content.lower():
match_state = s
break
if match_state == "Unknown" and state:
match_state = state # Fallback to query state if not found in content
documents_retrieved.append(doc_content)
metadatas_retrieved.append({"state": match_state, "chunk_id": f"sim_chunk_{i+1}"})
state_summary_doc = None
state_summary_metadata = None
if state:
for key, content in self.documents.items():
if f"state_summary_{state.lower()}" in key.lower().replace(" ", "_"):
state_summary_doc = content
state_summary_metadata = {"state": state, "type": "summary"}
break
results = {
"document_results": {"documents": [documents_retrieved], "metadatas": [metadatas_retrieved]},
"state_results": {"documents": [[state_summary_doc]] if state_summary_doc else [[]], "metadatas": [[state_summary_metadata]] if state_summary_metadata else [[]]}
}
logging.info(f"Placeholder: Returned {len(documents_retrieved)} document results and {1 if state_summary_doc else 0} state summary results.")
return results
def get_states(self) -> List[str]:
logging.info("Placeholder: Getting states from DB")
# Simulate loading states or return pre-defined ones
return sorted(list(set(self.states)))
def document_collection(self): # Simulates Chroma collection
return type('Collection', (object,), {'count': lambda: len(self.documents)})()
def state_collection(self): # Simulates Chroma collection
return type('Collection', (object,), {'count': lambda: len(self.states)})()
except ImportError:
logging.error("Error: Could not import VectorDatabase. Using a placeholder for demonstration. Please ensure vector_db.py exists and dependencies (chromadb, pypdf, sentence-transformers) are installed for full functionality.")
# Define a simple placeholder if vector_db.py is missing
class VectorDatabase:
def __init__(self, persist_directory: str = "chroma_db"):
logging.warning("Using placeholder VectorDatabase. Full functionality requires 'vector_db.py'.")
self.persist_directory = persist_directory
self.documents = {}
self.states = []
def process_and_load_pdf(self, pdf_path: str) -> int:
logging.warning(f"Placeholder: Cannot process PDF '{pdf_path}' without actual VectorDatabase implementation.")
self.documents = {
"doc1": "California Civil Code § 1950.5: Security deposit limit is two months' rent. Must be returned within 21 days.",
"doc2": "New York Real Property Law § 235-b: Implied Warranty of Habitability. Landlord must keep premises fit for human habitation.",
"doc3": "Texas Property Code § 92.056: Landlord's duty to repair or remedy. Tenant must give notice and time to repair.",
}
self.states = ["California", "New York", "Texas", "Florida", "Illinois"]
return len(self.states) # Simulate some states loaded
def query(self, query_text: str, state: str = None, n_results: int = 5) -> Dict[str, any]:
logging.warning("Placeholder: Cannot perform actual vector query without VectorDatabase implementation.")
# Simple dummy response
if state == "California":
return {"answer": f"Simulated response for California: Security deposits are governed by specific statutes like Civil Code § 1950.5.", "context_used": "Simulated context for CA"}
return {"answer": f"Simulated response for {state}: Landlord-tenant laws vary by state.", "context_used": "Simulated general context"}
def get_states(self) -> List[str]:
logging.warning("Placeholder: Getting states from dummy VectorDatabase.")
return ["California", "New York", "Texas", "Florida", "Illinois"]
def document_collection(self): # Simulates Chroma collection
return type('Collection', (object,), {'count': lambda: len(self.documents)})()
def state_collection(self): # Simulates Chroma collection
return type('Collection', (object,), {'count': lambda: len(self.states)})()
# --- Ensure langchain_openai is accessible ---
try:
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
except ImportError:
logging.error("Error: langchain-openai or langchain components not found. Please install them: pip install langchain-openai langchain.")
# Define placeholder classes if Langchain is missing
class ChatOpenAI:
def __init__(self, *args, **kwargs):
logging.warning("Using placeholder ChatOpenAI. Install 'langchain-openai' for actual LLM functionality.")
self.kwargs = kwargs
def invoke(self, messages):
if "fail" in messages.get("query", "").lower():
raise Exception("Simulated LLM error.")
return {"text": f"Placeholder LLM response for query: '{messages.get('query')}' in state '{messages.get('state')}'. Please install langchain-openai for real AI responses."}
class PromptTemplate:
def __init__(self, input_variables, template):
self.input_variables = input_variables
self.template = template
logging.warning("Using placeholder PromptTemplate.")
class LLMChain:
def __init__(self, llm, prompt):
self.llm = llm
self.prompt = prompt
logging.warning("Using placeholder LLMChain.")
def invoke(self, input_data):
# Simulate the prompt being filled and passed to LLM
filled_prompt = self.prompt.template.format(**input_data)
logging.info(f"Placeholder: LLMChain invoking with prompt: {filled_prompt[:100]}...")
return self.llm.invoke(input_data)
# Suppress warnings
import warnings
warnings.filterwarnings("ignore", category=SyntaxWarning)
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*")
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
)
# --- RAGSystem Class ---
class RAGSystem:
def __init__(self, vector_db: Optional[VectorDatabase] = None):
logging.info("Initializing RAGSystem")
self.vector_db = vector_db if vector_db else VectorDatabase()
self.llm = None
self.chain = None
self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.
Instructions:
* Use the context and statutes as the primary basis for your answer when available.
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
* Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
* If multiple statutes apply, list all relevant ones.
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
* Include practical examples or scenarios to enhance clarity and usefulness.
* Use bullet points or numbered lists for readability when appropriate.
* Maintain a professional and neutral tone.
Question: {query}
State: {state}
Statutes from context:
{statutes}
Context information:
--- START CONTEXT ---
{context}
--- END CONCONTEXT ---
Answer:"""
self.prompt_template = PromptTemplate(
input_variables=["query", "context", "state", "statutes"],
template=self.prompt_template_str
)
logging.info("RAGSystem initialized.")
def extract_statutes(self, text: str) -> str:
statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b'
statutes = re.findall(statute_pattern, text, re.IGNORECASE)
valid_statutes = []
for statute in statutes:
statute = statute.strip()
if '§' in statute and any(char.isdigit() for char in statute):
if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
if len(statute) > 5:
valid_statutes.append(statute)
if valid_statutes:
seen = set()
unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))]
logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
return "\n".join(f"- {s}" for s in unique_statutes)
logging.info("No statutes found matching the pattern in the context.")
return "No specific statutes found in the provided context."
@lru_cache(maxsize=50)
def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}")
if not state or state == "Select a state..." or "Error" in state:
logging.warning("No valid state provided for query.")
return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"}
if not query or not query.strip():
logging.warning("No query provided.")
return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"}
if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"):
logging.warning("No valid OpenAI API key provided.")
return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"}
try:
logging.info("Initializing temporary LLM and Chain for this query...")
temp_llm = ChatOpenAI(
temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo",
max_tokens=1500, request_timeout=45
)
temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template)
logging.info("Temporary LLM and Chain initialized successfully.")
except Exception as e:
logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True)
error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity."
if "authentication" in str(e).lower():
error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key."
return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"}
context = "No relevant context found."
statutes_from_context = "Statute retrieval skipped due to context issues."
try:
logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...")
results = self.vector_db.query(query, state=state, n_results=n_results)
logging.info(f"Vector DB query successful for state '{state}'. Processing results...")
context_parts = []
doc_results = results.get("document_results", {})
docs = doc_results.get("documents", [[]])[0]
metadatas = doc_results.get("metadatas", [[]])[0]
if docs and metadatas and len(docs) == len(metadatas):
logging.info(f"Found {len(docs)} document chunks.")
for i, doc_content in enumerate(docs):
metadata = metadatas[i]
state_label = metadata.get('state', 'Unknown State')
chunk_id = metadata.get('chunk_id', 'N/A')
context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}")
state_results_data = results.get("state_results", {})
state_docs = state_results_data.get("documents", [[]])[0]
state_metadatas = state_results_data.get("metadatas", [[]])[0]
if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
logging.info(f"Found {len(state_docs)} state summary documents.")
for i, state_doc_content in enumerate(state_docs):
metadata = state_metadatas[i]
state_label = metadata.get('state', state)
context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}")
if context_parts:
context = "\n\n---\n\n".join(context_parts)
logging.info(f"Constructed context with {len(context_parts)} parts. Length: {len(context)} chars.")
try:
statutes_from_context = self.extract_statutes(context)
except Exception as e:
logging.error(f"Error extracting statutes: {e}", exc_info=True)
statutes_from_context = "Error extracting statutes from context."
else:
logging.warning("No relevant context parts found from vector DB query.")
context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge."
statutes_from_context = "No specific statutes found as no context was retrieved."
except Exception as e:
logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True)
context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate."
statutes_from_context = "Statute retrieval skipped due to error retrieving context."
try:
logging.info("Invoking LLMChain with constructed input...")
llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context}
answer_dict = temp_chain.invoke(llm_input)
answer_text = answer_dict.get('text', '').strip()
if not answer_text:
logging.warning("LLM returned an empty answer.")
answer_text = "<div class='error-message'><span class='error-icon'>⚠️</span>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>"
else:
logging.info("LLM generated answer successfully.")
return {"answer": answer_text, "context_used": context}
except Exception as e:
logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
error_message = "Error: AI answer generation failed."
details = f"Details: {str(e)}"
if "authentication" in str(e).lower():
error_message = "Error: Authentication failed. Please double-check your OpenAI API key."
details = ""
elif "rate limit" in str(e).lower():
error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again."
details = ""
elif "context length" in str(e).lower():
error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context."
details = "Try simplifying your question or asking about a more specific aspect."
elif "timeout" in str(e).lower():
error_message = "Error: The request to the AI model timed out. The service might be busy."
details = "Please try again in a few moments."
formatted_error = f"<div class='error-message'><span class='error-icon'>❌</span>{error_message}</div>"
if details:
formatted_error += f"<div class='error-details'>{details}</div>"
return {"answer": formatted_error, "context_used": context}
def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results)
def get_states(self) -> List[str]:
try:
states = self.vector_db.get_states()
if not states:
logging.warning("No states retrieved from vector_db. Returning empty list.")
return []
valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state...")))
logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.")
return valid_states
except Exception as e:
logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True)
return ["Error: Could not load states"]
def load_pdf(self, pdf_path: str) -> int:
if not os.path.exists(pdf_path):
logging.error(f"PDF file not found at path: {pdf_path}")
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
try:
logging.info(f"Attempting to load/verify data from PDF: {pdf_path}")
num_states_processed = self.vector_db.process_and_load_pdf(pdf_path)
doc_count = self.vector_db.document_collection.count()
state_count = self.vector_db.state_collection.count()
total_items = doc_count + state_count
if total_items > 0:
logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.")
current_states = self.get_states()
return len(current_states) if current_states and "Error" not in current_states[0] else 0
else:
logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.")
return 0
except Exception as e:
logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e
# --- GRADIO INTERFACE ---
def gradio_interface(self):
def query_interface_wrapper(api_key: str, query: str, state: str) -> str:
# Basic client-side validation for immediate feedback (redundant but good UX)
if not api_key or not api_key.strip() or not api_key.startswith("sk-"):
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get one free from OpenAI</a>.</div>"
if not state or state == "Select a state..." or "Error" in state:
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please select a valid state from the dropdown.</div>"
if not query or not query.strip():
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please enter your question in the text box.</div>"
# Call the core processing logic
result = self.process_query(query=query, state=state, openai_api_key=api_key)
answer = result.get("answer", "<div class='error-message'><span class='error-icon'>⚠️</span>An unexpected error occurred.</div>")
# Check if the answer already contains an error message (from deeper within process_query)
if "<div class='error-message'>" in answer:
return answer # Return the pre-formatted error message directly
else:
# Format the successful response with the new UI structure
formatted_response = f"<div class='response-header'><span class='response-icon'>📜</span>Response for {state}</div><hr class='divider'>{answer}"
return formatted_response
try:
available_states_list = self.get_states()
dropdown_choices = ["Select a state..."] + (available_states_list if available_states_list and "Error" not in available_states_list[0] else ["Error: States unavailable"])
initial_value = dropdown_choices[0]
except Exception: # Catch-all for safety
dropdown_choices = ["Error: Critical failure loading states"]
initial_value = dropdown_choices[0]
# Define example queries, filtering based on available states
example_queries_base = [
["What are the rules for security deposit returns?", "California"],
["Can a landlord enter my apartment without notice?", "New York"],
["My landlord hasn't made necessary repairs. What can I do?", "Texas"],
["How much notice must a landlord give to raise rent?", "Florida"],
["What is an implied warranty of habitability?", "Illinois"],
["Can a landlord evict a tenant for not paying rent?", "California"],
["What is a fixed-term lease?", "New York"],
["Are emotional support animals allowed?", "Texas"],
["What is a notice to quit?", "Florida"],
["How do I break my lease early?", "Illinois"],
["What are the quiet enjoyment rights?", "Washington"],
]
example_queries = []
if available_states_list and "Error" not in available_states_list[0] and len(available_states_list) > 0:
loaded_states_set = set(available_states_list)
# Filter for examples whose state is in the loaded states
example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set]
# Add a generic example if no specific state examples match or if list is empty
if not example_queries:
example_queries.append(["What basic rights do tenants have?", available_states_list[0] if available_states_list else "California"])
else: # Fallback if states list is problematic
example_queries.append(["What basic rights do tenants have?", "California"])
# Enhanced Custom CSS optimized for Paris theme
custom_css = """
/* Import premium fonts for better readability */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Poppins:wght@500;600;700;800&family=JetBrains+Mono:wght@400;500&display=swap');
/* Enhanced root variables optimized for Paris theme */
:root {
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
--secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
--accent-color: #6366f1;
--accent-hover: #4f46e5;
--text-contrast: #1a202c;
--text-muted: #718096;
--border-strong: #e2e8f0;
--border-subtle: #f1f5f9;
--surface-primary: #ffffff;
--surface-secondary: #f7fafc;
--surface-accent: #edf2f7;
--shadow-soft: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
--shadow-medium: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
--shadow-strong: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04);
--border-radius-sm: 8px;
--border-radius-md: 12px;
--border-radius-lg: 16px;
--spacing-xs: 0.5rem;
--spacing-sm: 0.75rem;
--spacing-md: 1rem;
--spacing-lg: 1.5rem;
--spacing-xl: 2rem;
}
/* Dark mode enhancements for Paris theme */
@media (prefers-color-scheme: dark) {
:root {
--surface-primary: #1a202c;
--surface-secondary: #2d3748;
--surface-accent: #4a5568;
--text-contrast: #f7fafc;
--text-muted: #a0aec0;
--border-strong: #4a5568;
--border-subtle: #2d3748;
}
}
/* Enhanced base container for Paris theme */
.gradio-container {
max-width: 1100px !important;
margin: 0 auto !important;
padding: var(--spacing-md) !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
background: var(--surface-secondary) !important;
min-height: 100vh !important;
}
/* Stunning header with Paris theme integration */
.app-header-wrapper {
background: var(--primary-gradient) !important;
border: 3px solid transparent !important;
background-clip: padding-box !important;
border-radius: var(--border-radius-lg) !important;
padding: var(--spacing-xl) !important;
margin-bottom: var(--spacing-lg) !important;
text-align: center !important;
box-shadow: var(--shadow-strong) !important;
position: relative !important;
overflow: hidden !important;
}
.app-header-wrapper::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0.05) 100%);
pointer-events: none;
}
.app-header-logo {
font-size: 3.5rem !important;
margin-bottom: var(--spacing-sm) !important;
display: block !important;
filter: drop-shadow(0 4px 8px rgba(0,0,0,0.3)) !important;
animation: float 3s ease-in-out infinite !important;
}
@keyframes float {
0%, 100% { transform: translateY(0px); }
50% { transform: translateY(-10px); }
}
.app-header-title {
font-family: 'Poppins', sans-serif !important;
font-size: 2.75rem !important;
font-weight: 800 !important;
color: white !important;
margin: 0 0 var(--spacing-sm) 0 !important;
line-height: 1.1 !important;
text-shadow: 0 4px 8px rgba(0,0,0,0.3) !important;
letter-spacing: -0.02em !important;
}
.app-header-tagline {
font-size: 1.2rem !important;
color: rgba(255,255,255,0.9) !important;
font-weight: 400 !important;
margin: 0 !important;
text-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
}
/* Compact and elegant main container */
.main-dashboard-container {
display: flex !important;
flex-direction: column !important;
gap: var(--spacing-md) !important;
}
/* Premium card design with superior boundaries */
.dashboard-card-section {
background: var(--surface-primary) !important;
border: 2px solid var(--border-strong) !important;
border-radius: var(--border-radius-md) !important;
padding: var(--spacing-lg) !important;
box-shadow: var(--shadow-soft) !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
position: relative !important;
overflow: hidden !important;
}
.dashboard-card-section::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 3px;
background: var(--secondary-gradient);
transform: translateX(-100%);
transition: transform 0.3s ease;
}
.dashboard-card-section:hover {
box-shadow: var(--shadow-medium) !important;
transform: translateY(-2px) !important;
border-color: var(--accent-color) !important;
}
.dashboard-card-section:hover::before {
transform: translateX(0);
}
/* Perfectly centered and styled section titles */
.sub-section-title {
font-family: 'Poppins', sans-serif !important;
font-size: 1.6rem !important;
font-weight: 700 !important;
color: var(--text-contrast) !important;
text-align: center !important;
margin: 0 0 var(--spacing-lg) 0 !important;
padding-bottom: var(--spacing-sm) !important;
border-bottom: 3px solid transparent !important;
background: var(--primary-gradient) !important;
background-clip: text !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
position: relative !important;
display: block !important;
}
.sub-section-title::after {
content: '';
position: absolute;
bottom: 0;
left: 50%;
transform: translateX(-50%);
width: 60px;
height: 3px;
background: var(--primary-gradient);
border-radius: 2px;
}
/* Superior input styling with crystal clear boundaries */
.gradio-textbox, .gradio-dropdown {
margin-bottom: var(--spacing-sm) !important;
}
.gradio-textbox textarea,
.gradio-textbox input,
.gradio-dropdown select {
background: var(--surface-primary) !important;
border: 2px solid var(--border-strong) !important;
border-radius: var(--border-radius-sm) !important;
padding: var(--spacing-md) !important;
font-size: 0.95rem !important;
font-family: 'Inter', sans-serif !important;
color: var(--text-contrast) !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: inset 0 1px 3px rgba(0,0,0,0.1) !important;
line-height: 1.5 !important;
}
.gradio-textbox textarea:focus,
.gradio-textbox input:focus,
.gradio-dropdown select:focus {
outline: none !important;
border-color: var(--accent-color) !important;
box-shadow: 0 0 0 4px rgba(99, 102, 241, 0.1), inset 0 1px 3px rgba(0,0,0,0.1) !important;
transform: translateY(-1px) !important;
}
.gradio-textbox textarea:hover,
.gradio-textbox input:hover,
.gradio-dropdown select:hover {
border-color: var(--accent-color) !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.1), inset 0 1px 3px rgba(0,0,0,0.1) !important;
}
/* Enhanced placeholder and label styling */
.gradio-textbox textarea::placeholder,
.gradio-textbox input::placeholder {
color: var(--text-muted) !important;
opacity: 0.8 !important;
font-style: italic !important;
}
.gradio-textbox label,
.gradio-dropdown label {
font-weight: 600 !important;
color: var(--text-contrast) !important;
font-size: 0.9rem !important;
margin-bottom: var(--spacing-xs) !important;
display: block !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
}
/* Refined info text */
.gradio-textbox .gr-form,
.gradio-dropdown .gr-form {
font-size: 0.85rem !important;
color: var(--text-muted) !important;
margin-top: var(--spacing-xs) !important;
font-style: italic !important;
}
/* Optimized input layout */
.input-row {
display: flex !important;
gap: var(--spacing-md) !important;
margin-bottom: var(--spacing-sm) !important;
align-items: flex-end !important;
}
.input-field {
flex: 1 !important;
min-width: 0 !important;
}
/* Premium button design */
.button-row {
display: flex !important;
gap: var(--spacing-md) !important;
justify-content: flex-end !important;
margin-top: var(--spacing-lg) !important;
flex-wrap: wrap !important;
}
.gradio-button {
padding: var(--spacing-md) var(--spacing-xl) !important;
border-radius: var(--border-radius-sm) !important;
font-weight: 600 !important;
font-size: 0.9rem !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
cursor: pointer !important;
border: 2px solid transparent !important;
position: relative !important;
overflow: hidden !important;
}
.gradio-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.2), transparent);
transition: left 0.5s;
}
.gradio-button:hover::before {
left: 100%;
}
.gr-button-primary {
background: var(--primary-gradient) !important;
color: white !important;
box-shadow: var(--shadow-soft) !important;
border: 2px solid transparent !important;
}
.gr-button-primary:hover {
box_shadow: var(--shadow-medium) !important;
transform: translateY(-2px) scale(1.02) !important;
}
.gr-button-primary:active {
transform: translateY(0) scale(0.98) !important;
}
.gr-button-secondary {
background: transparent !important;
color: var(--text-contrast) !important;
border: 2px solid var(--border-strong) !important;
backdrop-filter: blur(10px) !important;
}
.gr-button-secondary:hover {
background: var(--surface-accent) !important;
border-color: var(--accent-color) !important;
transform: translateY(-1px) !important;
box_shadow: var(--shadow-soft) !important;
}
/* Exceptional output styling */
.output-content-wrapper {
background: var(--surface-primary) !important;
border: 2px solid var(--border-strong) !important;
border-radius: var(--border-radius-sm) !important;
padding: var(--spacing-lg) !important;
min-height: 120px !important;
font-size: 0.95rem !important;
line-height: 1.6 !important;
color: var(--text-contrast) !important;
box-shadow: inset 0 2px 4px rgba(0,0,0,0.05) !important;
font-family: 'Inter', sans-serif !important;
}
.response-header {
font-size: 1.3rem !important;
font-weight: 700 !important;
color: var(--text-contrast) !important;
margin-bottom: var(--spacing-md) !important;
display: flex !important;
align-items: center !important;
gap: var(--spacing-sm) !important;
background: var(--primary-gradient) !important;
background-clip: text !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
}
.response-icon {
font-size: 1.4rem !important;
background: var(--primary-gradient) !important;
background-clip: text !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
}
.divider {
border: none !important;
border-top: 2px solid var(--border-strong) !important;
margin: var(--spacing-md) 0 !important;
background: var(--primary-gradient) !important;
height: 2px !important;
border: none !important;
border-radius: 1px !important;
}
/* Enhanced error styling */
.error-message {
background: linear-gradient(135deg, #fef2f2 0%, #fde8e8 100%) !important;
border: 2px solid #fecaca !important;
color: #dc2626 !important;
padding: var(--spacing-lg) !important;
border-radius: var(--border-radius-sm) !important;
display: flex !important;
align-items: flex-start !important;
gap: var(--spacing-md) !important;
font-size: 0.9rem !important;
box_shadow: var(--shadow-soft) !important;
}
.error-icon {
font-size: 1.3rem !important;
line-height: 1 !important;
margin-top: 0.1rem !important;
animation: pulse 2s infinite !important;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.7; }
}
/* Elegant placeholder */
.placeholder {
background: linear-gradient(135deg, var(--surface-secondary) 0%, var(--surface-accent) 100%) !important;
border: 2px dashed var(--border-strong) !important;
border-radius: var(--border-radius-sm) !important;
padding: var(--spacing-xl) var(--spacing-lg) !important;
text-align: center !important;
color: var(--text-muted) !important;
font-style: italic !important;
font-size: 1rem !important;
transition: all 0.3s ease !important;
}
.placeholder:hover {
border-color: var(--accent-color) !important;
background: linear-gradient(135deg, var(--surface-accent) 0%, var(--surface-secondary) 100%) !important;
}
/* Premium examples table */
.examples-section .gr-samples-table {
border: 2px solid var(--border-strong) !important;
border-radius: var(--border-radius-sm) !important;
overflow: hidden !important;
margin-top: var(--spacing-lg) !important;
box_shadow: var(--shadow-soft) !important;
}
.examples-section .gr-samples-table th,
.examples-section .gr-samples-table td {
padding: var(--spacing-md) !important;
border: none !important;
font-size: 0.9rem !important;
transition: all 0.2s ease !important;
}
.examples-section .gr-samples-table th {
background: var(--primary-gradient) !important;
color: white !important;
font-weight: 600 !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
font-size: 0.8rem !important;
}
.examples-section .gr-samples-table td {
background: var(--surface-primary) !important;
color: var(--text-contrast) !important;
border-top: 1px solid var(--border-subtle) !important;
cursor: pointer !important;
}
.examples-section .gr-samples-table tr:hover td {
background: var(--surface-accent) !important;
transform: scale(1.01) !important;
}
/* Sophisticated footer */
.app-footer-wrapper {
background: linear-gradient(135deg, var(--surface-secondary) 0%, var(--surface-accent) 100%) !important;
border: 2px solid var(--border-strong) !important;
border-radius: var(--border-radius-md) !important;
padding: var(--spacing-lg) !important;
margin-top: var(--spacing-lg) !important;
text-align: center !important;
box_shadow: var(--shadow-soft) !important;
}
.app-footer p {
margin: var(--spacing-sm) 0 !important;
font-size: 0.9rem !important;
color: var(--text-muted) !important;
line-height: 1.6 !important;
}
.app-footer a {
background: var(--primary-gradient) !important;
background-clip: text !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
text-decoration: none !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.app-footer a:hover {
text-decoration: underline !important;
transform: scale(1.05) !important;
display: inline-block !important;
}
/* Hide Gradio default elements */
.gr-examples .gr-label,
.gr-examples .label-wrap,
.gr-examples .gr-accordion-header {
display: none !important;
}
/* Responsive design */
@media (max-width: 768px) {
.gradio-container {
padding: var(--spacing-sm) !important;
}
.app-header-title {
font-size: 2rem !important;
}
.app-header-tagline {
font-size: 1rem !important;
}
.input-row {
flex-direction: column !important;
}
.button-row {
flex-direction: column !important;
}
.gradio-button {
width: 100% !important;
}
}
"""
with gr.Blocks(theme="earneleh/paris", css=custom_css, title="Landlord-Tenant Rights Assistant") as demo:
# Header Section
with gr.Group(elem_classes="app-header-wrapper"):
gr.Markdown(
"""
<div class="app-header">
<span class="app-header-logo">⚖️</span>
<h1 class="app-header-title">Landlord-Tenant Rights Assistant</h1>
<p class="app-header-tagline">Empowering You with State-Specific Legal Insights</p>
</div>
"""
)
# Main Dashboard Container
with gr.Column(elem_classes="main-dashboard-container"):
# Introduction and Disclaimer Card
with gr.Group(elem_classes="dashboard-card-section"):
gr.Markdown("<h3 class='sub-section-title'>Welcome & Disclaimer</h3>")
gr.Markdown(
"""
Navigate landlord-tenant laws with ease. This assistant provides detailed, state-specific answers grounded in legal authority.
**Disclaimer:** This tool is for informational purposes only and does not constitute legal advice. For specific legal guidance, always consult a licensed attorney in your jurisdiction.
"""
)
# OpenAI API Key Input Card
with gr.Group(elem_classes="dashboard-card-section"):
gr.Markdown("<h3 class='sub-section-title'>OpenAI API Key</h3>")
api_key_input = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API key (e.g., sk-...)",
info="Required to process your query. Get one free from OpenAI.",
lines=1,
elem_classes=["input-field-group"]
)
# Query Input and State Selection Card
with gr.Group(elem_classes="dashboard-card-section"):
gr.Markdown("<h3 class='sub-section-title'>Ask Your Question</h3>")
with gr.Row(elem_classes="input-row"):
with gr.Column(elem_classes="input-field", scale=3):
query_input = gr.Textbox(
label="Your Question",
placeholder="E.g., What are the rules for security deposit returns in my state?",
lines=4,
max_lines=8,
elem_classes=["input-field-group"]
)
with gr.Column(elem_classes="input-field", scale=1):
state_input = gr.Dropdown(
label="Select State",
choices=dropdown_choices,
value=initial_value,
allow_custom_value=False,
elem_classes=["input-field-group"]
)
with gr.Row(elem_classes="button-row"):
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["gr-button-secondary"])
submit_button = gr.Button("Submit Query", variant="primary", elem_classes=["gr-button-primary"])
# Output Display Card
with gr.Group(elem_classes="dashboard-card-section"):
gr.Markdown("<h3 class='sub-section-title'>Legal Assistant's Response</h3>")
output = gr.Markdown(
value="<div class='placeholder'>The answer will appear here after submitting your query.</div>",
elem_classes="output-content-wrapper"
)
# Example Questions Section
with gr.Group(elem_classes="dashboard-card-section examples-section"):
gr.Markdown("<h3 class='sub-section-title'>Example Questions</h3>")
if example_queries:
gr.Examples(
examples=example_queries,
inputs=[query_input, state_input],
examples_per_page=5,
label="" # Hide the default "Examples" label
)
else:
gr.Markdown("<div class='placeholder'>Sample questions could not be loaded.</div>")
# Footer Section
with gr.Group(elem_classes="app-footer-wrapper"):
gr.Markdown(
"""
This tool is for informational purposes only and does not constitute legal advice. For legal guidance, always consult with a licensed attorney in your jurisdiction.
Developed by **Nischal Subedi**. Connect on [LinkedIn](https://www.linkedin.com/in/nischal1/) or explore insights at [Substack](https://datascientistinsights.substack.com/).
"""
)
# Event Listeners
submit_button.click(
fn=query_interface_wrapper,
inputs=[api_key_input, query_input, state_input],
outputs=output,
api_name="submit_query" # API name for potential external calls
)
clear_button.click(
fn=lambda: (
"", # Clear API key
"", # Clear query input
initial_value, # Reset state dropdown to initial value
"<div class='placeholder'>Inputs cleared. Ready for your next question.</div>" # Reset output
),
inputs=[],
outputs=[api_key_input, query_input, state_input, output]
)
return demo
# --- Main Execution Block ---
if __name__ == "__main__":
logging.info("Starting Landlord-Tenant Rights Bot application...")
try:
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf")
DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db")
# Use environment variables for paths if available, otherwise use defaults
PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH)
VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH)
# Ensure the directory for the vector database exists
os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True)
logging.info(f"Attempting to load PDF from: {PDF_PATH}")
if not os.path.exists(PDF_PATH):
logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
print(f"\n--- CONFIGURATION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') not found at: {PDF_PATH}.\nPlease ensure it exists or set 'PDF_PATH' environment variable.\n---------------------------\n")
exit(1) # Exit if PDF not found
if not os.access(PDF_PATH, os.R_OK):
logging.error(f"FATAL: PDF file at '{PDF_PATH}' exists but is not readable. Check file permissions.")
print(f"\n--- PERMISSION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') found but not readable at: {PDF_PATH}\nPlease check file permissions (e.g., using 'chmod +r' in terminal).\n---------------------------\n")
exit(1) # Exit if PDF not readable
logging.info(f"PDF file '{os.path.basename(PDF_PATH)}' found and is readable.")
# Initialize VectorDatabase and RAGSystem
vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
rag = RAGSystem(vector_db=vector_db_instance)
# Load PDF into the vector database (or verify it's loaded if already persisted)
rag.load_pdf(PDF_PATH)
# Get the Gradio interface object from the RAGSystem instance
app_interface = rag.gradio_interface()
# Determine server port (for Gradio Spaces compatibility)
SERVER_PORT = int(os.getenv("PORT", 7860))
logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}")
print(f"\n--- Gradio App Running ---\nAccess at: http://localhost:{SERVER_PORT} or your public Spaces URL\n--------------------------\n")
# Launch the Gradio interface
app_interface.launch(server_name="0.0.0.0", server_port=SERVER_PORT, share=False)
except ModuleNotFoundError as e:
if "vector_db" in str(e):
logging.error(f"FATAL: Could not import VectorDatabase. Ensure 'vector_db.py' is in the same directory and 'chromadb', 'langchain', 'pypdf', 'sentence-transformers' are installed.", exc_info=True)
print(f"\n--- MISSING DEPENDENCY OR FILE ---\nCould not find/import 'vector_db.py' or one of its dependencies.\nError: {e}\nPlease ensure 'vector_db.py' is present and all required packages (chromadb, langchain, pypdf, sentence-transformers, etc.) are in your requirements.txt and installed.\n---------------------------\n")
else:
logging.error(f"Application startup failed due to a missing module: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR - MISSING MODULE ---\n{str(e)}\nPlease ensure all dependencies are installed.\nCheck logs for more details.\n---------------------------\n")
exit(1)
except FileNotFoundError as e:
logging.error(f"Application startup failed due to a missing file: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR - FILE NOT FOUND ---\n{str(e)}\nPlease ensure the file exists at the specified path.\nCheck logs for more details.\n---------------------------\n")
exit(1)
except Exception as e:
logging.error(f"Application startup failed: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR ---\n{str(e)}\nCheck logs for more details.\n---------------------------\n")
exit(1) |