File size: 30,000 Bytes
b9756ef
 
bfee845
b9756ef
c9c872c
bfee845
ea0c3e1
7e15221
0634f1a
7e15221
c9c872c
0634f1a
c9c872c
 
badac92
c9c872c
0634f1a
 
 
 
c9c872c
badac92
c9c872c
0634f1a
c9c872c
 
ea0c3e1
a07f515
0634f1a
 
 
 
 
a07f515
7c7cb71
 
 
 
ea0c3e1
badac92
b9756ef
 
 
 
 
 
bfee845
b9756ef
0634f1a
 
 
 
 
 
 
 
b9756ef
 
7c7cb71
b9756ef
 
bfee845
b9756ef
7e15221
b9756ef
bfee845
 
 
b9756ef
bfee845
ea0c3e1
7c7cb71
0634f1a
bfee845
7c7cb71
 
0634f1a
 
7e15221
0634f1a
 
bfee845
7c7cb71
 
0634f1a
bfee845
72aa01f
ea0c3e1
bfee845
 
 
0634f1a
 
 
 
7f1c90c
0634f1a
 
 
bfee845
0634f1a
 
 
 
 
b9756ef
0634f1a
 
 
 
 
 
 
b9756ef
0634f1a
 
 
 
 
 
 
 
bfee845
0634f1a
bfee845
0634f1a
bfee845
 
 
0634f1a
 
bfee845
0634f1a
bfee845
 
 
 
0634f1a
bfee845
 
 
 
 
0634f1a
 
bfee845
0634f1a
 
bfee845
 
badac92
e66972a
0634f1a
 
 
 
 
bfee845
0634f1a
 
 
bfee845
 
0634f1a
 
 
bfee845
b9756ef
0634f1a
 
 
bfee845
 
 
0634f1a
badac92
0634f1a
 
bfee845
0634f1a
bfee845
b9756ef
bfee845
0634f1a
 
bfee845
57afd75
0634f1a
bfee845
0634f1a
 
 
 
 
 
7e15221
 
0634f1a
badac92
0634f1a
 
 
 
bfee845
0634f1a
 
7c7cb71
b9756ef
 
 
bfee845
0634f1a
 
 
 
 
b9756ef
0634f1a
 
ea0c3e1
b9756ef
bfee845
0634f1a
 
b9756ef
0634f1a
badac92
0634f1a
 
 
 
 
 
 
 
 
bfee845
0634f1a
 
 
b9756ef
bfee845
0634f1a
bfee845
badac92
7c7cb71
6cd408d
8336e55
6cd408d
8336e55
6cd408d
8336e55
6cd408d
8336e55
6cd408d
8336e55
 
 
6cd408d
 
 
792a7aa
 
 
 
0634f1a
8336e55
6cd408d
 
 
 
8336e55
6cd408d
 
 
 
 
8336e55
6cd408d
 
8336e55
 
 
6cd408d
 
 
 
 
 
 
 
 
8336e55
 
6cd408d
 
 
8336e55
 
6cd408d
 
 
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
8336e55
 
6cd408d
 
 
 
 
 
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
 
8336e55
 
6cd408d
 
 
 
 
 
 
6c9ad73
8336e55
6cd408d
 
 
 
8336e55
 
6cd408d
 
 
 
 
8336e55
 
6cd408d
 
 
 
 
 
 
 
7e15221
8336e55
6cd408d
 
 
 
c9c872c
8336e55
6cd408d
 
 
 
b29695d
8336e55
6cd408d
 
 
72aa01f
8336e55
6cd408d
 
 
6c9ad73
8336e55
6cd408d
 
 
 
 
 
 
8336e55
 
6cd408d
 
 
8336e55
 
6cd408d
 
b29695d
8336e55
6cd408d
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
 
 
 
 
 
 
8336e55
 
6cd408d
 
6c9ad73
8336e55
6cd408d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8336e55
 
 
6cd408d
 
 
 
 
 
8336e55
 
6cd408d
 
 
 
8336e55
 
6cd408d
 
8336e55
 
6cd408d
 
 
 
 
 
 
 
8336e55
 
6cd408d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72aa01f
ae4713f
6cd408d
 
 
8336e55
 
 
 
6cd408d
 
 
792a7aa
6cd408d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8336e55
792a7aa
 
 
 
 
8336e55
 
 
6cd408d
8336e55
6cd408d
8336e55
6cd408d
8336e55
 
 
b9a4862
8336e55
72aa01f
a07f515
ea0c3e1
0634f1a
b9756ef
0634f1a
7e15221
 
bfee845
0634f1a
 
bfee845
badac92
0634f1a
408ac65
7e15221
0634f1a
 
7e15221
badac92
7e15221
 
 
 
badac92
7e15221
 
2e6a585
badac92
0634f1a
bfee845
4ebf92d
badac92
7e15221
72aa01f
badac92
bfee845
badac92
4ebf92d
0634f1a
7e15221
badac92
ae4713f
7e15221
 
 
 
 
 
 
ae4713f
7e15221
 
 
ae4713f
b9756ef
7e15221
 
0634f1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import os
import logging
from typing import Dict, List, Optional
from functools import lru_cache
import re

import gradio as gr

try:
    # Assuming vector_db.py exists in the same directory or is installed
    from vector_db import VectorDatabase
except ImportError:
    print("Error: Could not import VectorDatabase from vector_db.py.")
    print("Please ensure vector_db.py exists in the same directory and is correctly defined.")
    # Exit if critical dependency is missing at import time
    exit(1)

try:
    from langchain_openai import ChatOpenAI
except ImportError:
    print("Error: langchain-openai not found. Please install it: pip install langchain-openai")
    # Exit if critical dependency is missing at import time
    exit(1)

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

# Suppress warnings for cleaner console output
import warnings
warnings.filterwarnings("ignore", category=SyntaxWarning)
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*")
warnings.filterwarnings("ignore", category=DeprecationWarning)

# Enhanced logging configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
)

# --- RAGSystem Class (Processing Logic - KEPT INTACT AS REQUESTED) ---
class RAGSystem:
    def __init__(self, vector_db: Optional[VectorDatabase] = None):
        logging.info("Initializing RAGSystem")
        self.vector_db = vector_db if vector_db else VectorDatabase()
        self.llm = None
        self.chain = None
        self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.
Instructions:
* Use the context and statutes as the primary basis for your answer when available.
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
* Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
* If multiple statutes apply, list all relevant ones.
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
* Include practical examples or scenarios to enhance clarity and usefulness.
* Use bullet points or numbered lists for readability when appropriate.
* Maintain a professional and neutral tone.
Question: {query}
State: {state}
Statutes from context:
{statutes}
Context information:
--- START CONTEXT ---
{context}
--- END CONCONTEXT ---
Answer:"""
        self.prompt_template = PromptTemplate(
            input_variables=["query", "context", "state", "statutes"],
            template=self.prompt_template_str
        )
        logging.info("RAGSystem initialized.")

    def extract_statutes(self, text: str) -> str:
        statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b'
        statutes = re.findall(statute_pattern, text, re.IGNORECASE)
        valid_statutes = []
        for statute in statutes:
            statute = statute.strip()
            if '§' in statute and any(char.isdigit() for char in statute):
                if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
                    if len(statute) > 5:
                        valid_statutes.append(statute)

        if valid_statutes:
            seen = set()
            unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))]
            logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
            return "\n".join(f"- {s}" for s in unique_statutes)

        logging.info("No statutes found matching the pattern in the context.")
        return "No specific statutes found in the provided context."

    @lru_cache(maxsize=50)
    def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
        logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}")

        if not state or state is None: # Removed "Select a state..." from error check as it's not a choice
            logging.warning("No valid state provided for query.")
            return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"}
        if not query or not query.strip():
            logging.warning("No query provided.")
            return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"}
        if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"):
            logging.warning("No valid OpenAI API key provided.")
            return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"}

        try:
            logging.info("Initializing temporary LLM and Chain for this query...")
            temp_llm = ChatOpenAI(
                temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo",
                max_tokens=1500, request_timeout=45
            )
            temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template)
            logging.info("Temporary LLM and Chain initialized successfully.")
        except Exception as e:
            logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True)
            error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity."
            if "authentication" in str(e).lower():
                error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key."
            return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"}

        context = "No relevant context found."
        statutes_from_context = "Statute retrieval skipped due to context issues."
        try:
            logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...")
            results = self.vector_db.query(query, state=state, n_results=n_results)
            logging.info(f"Vector DB query successful for state '{state}'. Processing results...")

            context_parts = []
            doc_results = results.get("document_results", {})
            docs = doc_results.get("documents", [[]])[0]
            metadatas = doc_results.get("metadatas", [[]])[0]
            if docs and metadatas and len(docs) == len(metadatas):
                logging.info(f"Found {len(docs)} document chunks.")
                for i, doc_content in enumerate(docs):
                    metadata = metadatas[i]
                    state_label = metadata.get('state', 'Unknown State')
                    chunk_id = metadata.get('chunk_id', 'N/A')
                    context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}")

            state_results_data = results.get("state_results", {})
            state_docs = state_results_data.get("documents", [[]])[0]
            state_metadatas = state_results_data.get("metadatas", [[]])[0]
            if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
                logging.info(f"Found {len(state_docs)} state summary documents.")
                for i, state_doc_content in enumerate(state_docs):
                    metadata = state_metadatas[i]
                    state_label = metadata.get('state', state)
                    context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}")

            if context_parts:
                context = "\n\n---\n\n".join(context_parts)
                logging.info(f"Constructed context with {len(context)} chars.")
                try:
                    statutes_from_context = self.extract_statutes(context)
                except Exception as e:
                    logging.error(f"Error extracting statutes: {e}", exc_info=True)
                    statutes_from_context = "Error extracting statutes from context."
            else:
                logging.warning("No relevant context parts found from vector DB query.")
                context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge."
                statutes_from_context = "No specific statutes found as no context was retrieved."

        except Exception as e:
            logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True)
            context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate."
            statutes_from_context = "Statute retrieval skipped due to error retrieving context."

        try:
            logging.info("Invoking LLMChain with constructed input...")
            llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context}
            answer_dict = temp_chain.invoke(llm_input)
            answer_text = answer_dict.get('text', '').strip()

            if not answer_text:
                logging.warning("LLM returned an empty answer.")
                answer_text = "<div class='error-message'><span class='error-icon'>⚠️</span>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>"
            else:
                logging.info("LLM generated answer successfully.")

            return {"answer": answer_text, "context_used": context}

        except Exception as e:
            logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
            error_message = "Error: AI answer generation failed."
            details = f"Details: {str(e)}"
            if "authentication" in str(e).lower():
                error_message = "Error: Authentication failed. Please double-check your OpenAI API key."
                details = ""
            elif "rate limit" in str(e).lower():
                error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again."
                details = ""
            elif "context length" in str(e).lower():
                error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context."
                details = "Try simplifying your question or asking about a more specific aspect."
            elif "timeout" in str(e).lower():
                error_message = "Error: The request to the AI model timed out. The service might be busy."
                details = "Please try again in a few moments."

            formatted_error = f"<div class='error-message'><span class='error-icon'>❌</span>{error_message}</div>"
            if details:
                formatted_error += f"<div class='error-details'>{details}</div>"

            return {"answer": formatted_error, "context_used": context}

    def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
        return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results)

    def get_states(self) -> List[str]:
        try:
            states = self.vector_db.get_states()
            if not states:
                logging.warning("No states retrieved from vector_db. Returning empty list.")
                return []
            valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state...")))
            logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.")
            return valid_states
        except Exception as e:
            logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True)
            return ["Error: Could not load states"]

    def load_pdf(self, pdf_path: str) -> int:
        if not os.path.exists(pdf_path):
            logging.error(f"PDF file not found at path: {pdf_path}")
            raise FileNotFoundError(f"PDF file not found: {pdf_path}")
        try:
            logging.info(f"Attempting to load/verify data from PDF: {pdf_path}")
            # Assuming process_and_load_pdf is part of VectorDatabase and correctly implemented
            num_states_processed = self.vector_db.process_and_load_pdf(pdf_path)
            doc_count = self.vector_db.document_collection.count()
            state_count = self.vector_db.state_collection.count()
            total_items = doc_count + state_count

            if total_items > 0:
                logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.")
                current_states = self.get_states()
                return len(current_states) if current_states and "Error" not in current_states[0] else 0
            else:
                logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.")
                return 0

        except Exception as e:
            logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
            raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e

    # --- GRADIO INTERFACE (NEW UI DESIGN) ---
    def gradio_interface(self):
        def query_interface_wrapper(api_key: str, query: str, state: str, mode: str) -> str:
            if not api_key or not api_key.strip() or not api_key.startswith("sk-"):
                return "<div class='error-message'>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get one here</a>.</div>"
            if not state or state is None:
                return "<div class='error-message'>Please select a valid state from the list.</div>"
            if not query or not query.strip():
                return "<div class='error-message'>Please enter your question in the text box.</div>"
            result = self.process_query(query=query, state=state, openai_api_key=api_key)
            answer = result.get("answer", "<div class='error-message'>An unexpected error occurred.</div>")
            if "<div class='error-message'>" in answer:
                return answer
            else:
                formatted_response = f"<div class='response-title'>Response for {state}</div><div class='response-content'>{answer}</div>"
                return f"<div class='output-box'>{formatted_response}</div>"

        def toggle_theme():
            is_dark = "dark-mode" in document.body.className
            document.body.className = "dark-mode" if not is_dark else ""
            return gr.update(visible=not is_dark), gr.update(visible=is_dark)

        try:
            available_states = self.get_states()
            print(f"DEBUG: States loaded: {available_states}")
            states = available_states if available_states and "Error" not in available_states[0] else ["Error: States unavailable"]
            initial_state = states[0] if states and "Error" not in states[0] else None
        except Exception as e:
            print(f"DEBUG: Error loading states: {e}")
            states = ["Error: Critical failure loading states"]
            initial_state = None

        example_queries = [
            ["What are the rules for security deposit returns?", "California"],
            ["Can a landlord enter without notice?", "New York"],
            ["What to do about unrepaired issues?", "Texas"],
        ]

        custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap');

        body {
            font-family: 'Roboto', sans-serif !important;
            margin: 0;
            padding: 0;
            background-color: #F5F5F5;
            color: #333;
            transition: all 0.3s ease;
        }

        .dark-mode {
            background-color: #1E1E1E;
            color: #E0E0E0;
        }

        .container {
            max-width: 800px;
            margin: 20px auto;
            padding: 20px;
            border-radius: 10px;
            box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        }

        .dark-mode .container {
            box-shadow: 0 2px 5px rgba(0,0,0,0.3);
        }

        .header {
            text-align: center;
            padding: 20px;
            border-bottom: 2px solid #DDD;
        }

        .dark-mode .header {
            border-bottom: 2px solid #444;
        }

        .header h1 {
            margin: 0;
            font-size: 2.5rem;
            color: #FF5722;
        }

        .dark-mode .header h1 {
            color: #FF7043;
        }

        .theme-toggle {
            margin: 10px 0;
            text-align: center;
        }

        .theme-toggle button {
            padding: 10px 20px;
            font-size: 1rem;
            cursor: pointer;
            border: none;
            border-radius: 5px;
            background-color: #FF5722;
            color: white;
            transition: background-color 0.3s;
        }

        .theme-toggle button:hover {
            background-color: #E64A19;
        }

        .dark-mode .theme-toggle button {
            background-color: #FF7043;
        }

        .dark-mode .theme-toggle button:hover {
            background-color: #F4511E;
        }

        .section {
            margin: 20px 0;
            padding: 15px;
            background-color: white;
            border-radius: 5px;
        }

        .dark-mode .section {
            background-color: #2C2C2C;
        }

        .section label {
            font-size: 1.2rem;
            font-weight: 500;
            margin-bottom: 10px;
            display: block;
        }

        .input-area {
            width: 100%;
            padding: 12px;
            font-size: 1rem;
            border: 2px solid #CCC;
            border-radius: 5px;
            box-sizing: border-box;
        }

        .dark-mode .input-area {
            background-color: #333;
            border-color: #555;
            color: #E0E0E0;
        }

        .radio-group {
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
            gap: 10px;
            margin-top: 10px;
        }

        .radio-group label {
            padding: 10px;
            background-color: #F0F0F0;
            border: 2px solid #DDD;
            border-radius: 5px;
            text-align: center;
            font-size: 1rem;
            cursor: pointer;
        }

        .dark-mode .radio-group label {
            background-color: #3A3A3A;
            border-color: #555;
            color: #E0E0E0;
        }

        .radio-group input[type="radio"]:checked + label {
            background-color: #FF5722;
            color: white;
            border-color: #E64A19;
        }

        .dark-mode .radio-group input[type="radio"]:checked + label {
            background-color: #FF7043;
            border-color: #F4511E;
        }

        .button-group {
            margin-top: 15px;
            text-align: right;
        }

        .button-group button {
            padding: 10px 20px;
            font-size: 1rem;
            cursor: pointer;
            border: none;
            border-radius: 5px;
            margin-left: 10px;
        }

        .submit-btn {
            background-color: #FF5722;
            color: white;
        }

        .submit-btn:hover {
            background-color: #E64A19;
        }

        .clear-btn {
            background-color: #B0BEC5;
            color: white;
        }

        .clear-btn:hover {
            background-color: #90A4AE;
        }

        .dark-mode .submit-btn {
            background-color: #FF7043;
        }

        .dark-mode .submit-btn:hover {
            background-color: #F4511E;
        }

        .dark-mode .clear-btn {
            background-color: #78909C;
        }

        .dark-mode .clear-btn:hover {
            background-color: #607D8B;
        }

        .output-box {
            margin-top: 20px;
            padding: 15px;
            border: 2px solid #DDD;
            border-radius: 5px;
            min-height: 100px;
        }

        .dark-mode .output-box {
            border-color: #555;
            background-color: #2C2C2C;
        }

        .response-title {
            font-size: 1.3rem;
            font-weight: 700;
            margin-bottom: 10px;
            color: #FF5722;
        }

        .dark-mode .response-title {
            color: #FF7043;
        }

        .response-content {
            font-size: 1rem;
            line-height: 1.6;
        }

        .error-message {
            background-color: #FFE0E0;
            border: 2px solid #F44336;
            color: #D32F2F;
            padding: 10px;
            border-radius: 5px;
            margin-top: 10px;
        }

        .dark-mode .error-message {
            background-color: #400000;
            border-color: #B71C1C;
            color: #EF5350;
        }

        .examples {
            margin-top: 20px;
        }

        .examples button {
            padding: 8px 15px;
            margin: 5px;
            font-size: 1rem;
            cursor: pointer;
            border: 2px solid #DDD;
            border-radius: 5px;
            background-color: white;
        }

        .dark-mode .examples button {
            border-color: #555;
            background-color: #3A3A3A;
            color: #E0E0E0;
        }

        .examples button:hover {
            background-color: #F5F5F5;
        }

        .dark-mode .examples button:hover {
            background-color: #444;
        }

        .footer {
            text-align: center;
            padding: 20px;
            font-size: 0.9rem;
            color: #666;
            border-top: 2px solid #DDD;
        }

        .dark-mode .footer {
            color: #A0A0A0;
            border-top: 2px solid #444;
        }
        """

        with gr.Blocks(css=custom_css, title="Landlord-Tenant Rights Assistant") as demo:
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("<div class='header'><h1>Landlord-Tenant Rights Assistant</h1></div>")
                    theme_toggle_btn = gr.Button("Toggle Dark Mode", elem_classes="theme-toggle")

            with gr.Column(elem_classes="container"):
                with gr.Column():
                    gr.Markdown("This AI-powered assistant helps navigate complex landlord-tenant laws. Ask a question about your state's regulations for detailed, legally-grounded insights.")

                with gr.Column(elem_classes="section"):
                    api_key_input = gr.Textbox(label="API Key", type="password", placeholder="Enter your OpenAI API key (e.g., sk-...)", elem_classes="input-area")

                with gr.Column(elem_classes="section"):
                    query_input = gr.Textbox(label="Your Question", placeholder="E.g., What are the rules for security deposit returns in my state?", lines=6, elem_classes="input-area")
                    state_input = gr.Radio(label="Select State", choices=states, value=initial_state, elem_classes="radio-group")
                    with gr.Row(elem_classes="button-group"):
                        clear_button = gr.Button("Clear", elem_classes="clear-btn")
                        submit_button = gr.Button("Submit Query", elem_classes="submit-btn")

                with gr.Column(elem_classes="section"):
                    output = gr.HTML(value="<div class='output-box'><div class='placeholder'>The answer will appear here after submitting your query.</div></div>")

                with gr.Column(elem_classes="examples"):
                    gr.Examples(examples=example_queries, inputs=[query_input, state_input], label="Example Questions")

                with gr.Column():
                    gr.Markdown("<div class='footer'><p><strong>Disclaimer:</strong> This tool is for informational purposes only and does not constitute legal advice. Consult a licensed attorney for specific guidance. Developed by Nischal Subedi.</p></div>")

            theme_toggle_btn.click(
                fn=toggle_theme,
                outputs=[]
            )

            submit_button.click(
                fn=query_interface_wrapper,
                inputs=[api_key_input, query_input, state_input],
                outputs=output
            )

            clear_button.click(
                fn=lambda: ["", "", initial_state, "<div class='output-box'><div class='placeholder'>Inputs cleared. Ready for your next question.</div></div>"],
                inputs=[],
                outputs=[api_key_input, query_input, state_input, output]
            )

            return demo

# --- Main Execution Block (UNCHANGED from original logic) ---
if __name__ == "__main__":
    logging.info("Starting Landlord-Tenant Rights Bot application...")
    try:
        SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
        DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf")
        DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db")

        PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH)
        VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH)

        # Ensure vector DB directory exists before initialization
        os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True)

        logging.info(f"Attempting to load PDF from: {PDF_PATH}")
        if not os.path.exists(PDF_PATH):
            logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
            print(f"\n--- CONFIGURATION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') not found at: {PDF_PATH}.\nPlease ensure it exists or set 'PDF_PATH' environment variable.\n---------------------------\n")
            exit(1) # Correctly exits if PDF is not found

        if not os.access(PDF_PATH, os.R_OK):
            logging.error(f"FATAL: PDF file at '{PDF_PATH}' exists but is not readable. Check file permissions.")
            print(f"\n--- PERMISSION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') found but not readable at: {PDF_PATH}\nPlease check file permissions (e.g., using 'chmod +r' in terminal).\n---------------------------\n")
            exit(1) # Correctly exits if PDF is unreadable

        logging.info(f"PDF file '{os.path.basename(PDF_PATH)}' found and is readable.")

        # Initialize VectorDatabase and RAGSystem
        vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
        rag = RAGSystem(vector_db=vector_db_instance)

        # Load PDF data into the vector DB (or verify it's already loaded)
        rag.load_pdf(PDF_PATH)

        # Get the Gradio interface object
        app_interface = rag.gradio_interface()
        SERVER_PORT = int(os.getenv("PORT", 7860)) # Use PORT env var for Hugging Face Spaces

        logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}")
        print(f"\n--- Gradio App Running ---\nAccess at: http://localhost:{SERVER_PORT} or your public Spaces URL\n--------------------------\n")
        app_interface.launch(server_name="0.0.0.0", server_port=SERVER_PORT, share=False) # share=False is typical for Spaces

    except ModuleNotFoundError as e:
        if "vector_db" in str(e):
             logging.error(f"FATAL: Could not import VectorDatabase. Ensure 'vector_db.py' is in the same directory and 'chromadb', 'langchain', 'pypdf', 'sentence-transformers' are installed.", exc_info=True)
             print(f"\n--- MISSING DEPENDENCY OR FILE ---\nCould not find/import 'vector_db.py' or one of its dependencies.\nError: {e}\nPlease ensure 'vector_db.py' is present and all required packages (chromadb, langchain, pypdf, sentence-transformers, etc.) are in your requirements.txt and installed.\n---------------------------\n")
        else:
            logging.error(f"Application startup failed due to a missing module: {str(e)}", exc_info=True)
            print(f"\n--- FATAL STARTUP ERROR - MISSING MODULE ---\n{str(e)}\nPlease ensure all dependencies are installed.\nCheck logs for more details.\n---------------------------\n")
        exit(1)
    except FileNotFoundError as e:
        logging.error(f"Application startup failed due to a missing file: {str(e)}", exc_info=True)
        print(f"\n--- FATAL STARTUP ERROR - FILE NOT FOUND ---\n{str(e)}\nPlease ensure the file exists at the specified path.\nCheck logs for more details.\n---------------------------\n")
        exit(1)
    except Exception as e:
        logging.error(f"Application startup failed: {str(e)}", exc_info=True)
        print(f"\n--- FATAL STARTUP ERROR ---\n{str(e)}\nCheck logs for more details.\n---------------------------\n")
        exit(1)