File size: 20,258 Bytes
b9756ef
 
 
 
 
ea0c3e1
b9756ef
 
 
 
 
ea0c3e1
7c7cb71
 
 
 
 
ea0c3e1
b9756ef
 
 
 
 
 
 
 
 
 
 
7c7cb71
 
b9756ef
7c7cb71
 
 
 
 
 
 
b9756ef
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
 
 
 
ea0c3e1
b9756ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0c3e1
7c7cb71
b9756ef
7c7cb71
 
b9756ef
7c7cb71
 
 
 
 
 
 
 
 
 
 
 
b9756ef
ea0c3e1
b9756ef
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
 
 
 
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
 
7c7cb71
b9756ef
 
4c5479b
 
 
b9756ef
4c5479b
b9756ef
 
 
7c7cb71
4c5479b
b9756ef
 
 
7c7cb71
 
b9756ef
7c7cb71
4c5479b
b9756ef
 
 
7c7cb71
 
b9756ef
 
 
7c7cb71
 
b9756ef
 
7c7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
7c7cb71
 
b9756ef
 
 
 
 
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
 
 
 
7c7cb71
b9756ef
 
 
 
7c7cb71
b9756ef
7c7cb71
b9756ef
 
 
 
 
 
 
 
ea0c3e1
b9756ef
 
 
 
 
 
 
 
 
7c7cb71
b9756ef
 
7c7cb71
4c5479b
b9756ef
7c7cb71
4c5479b
b9756ef
7c7cb71
 
b9756ef
 
 
7c7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
4c5479b
 
 
 
 
b9756ef
 
4c5479b
 
 
 
 
 
 
 
 
 
7c7cb71
4c5479b
 
 
 
 
 
 
 
 
 
 
27665bd
dee52be
27665bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c5479b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7cb71
4c5479b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27665bd
 
 
 
 
 
 
 
 
 
4c5479b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7cb71
4c5479b
 
 
 
27665bd
7c7cb71
27665bd
4c5479b
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7cb71
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
4c5479b
 
7c7cb71
 
 
b9756ef
4c5479b
 
7c7cb71
 
b9756ef
 
 
4c5479b
 
b9756ef
7c7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0c3e1
 
b9756ef
 
 
 
 
 
7c7cb71
 
b9756ef
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import os
import json
from typing import Dict, List, Optional
import logging
from functools import lru_cache
import gradio as gr
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from vector_db import VectorDatabase
import re

# Enhanced logging for better debugging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
)

class RAGSystem:
    def __init__(self, vector_db: Optional[VectorDatabase] = None):
        logging.info("Initializing RAGSystem")
        
        self.vector_db = vector_db if vector_db else VectorDatabase()
        
        self.llm = None
        self.chain = None
        
        self.prompt_template = PromptTemplate(
            input_variables=["query", "context", "state", "statutes"],
            template="""You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.

Instructions:
- Use the context and statutes as the primary basis for your answer when available.
- For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
- Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
- If multiple statutes apply, list all relevant ones.
- If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
- Include practical examples or scenarios to enhance clarity and usefulness.
- Use bullet points or numbered lists for readability when appropriate.
- Maintain a professional and neutral tone.

Question: {query}
State: {state}
Statutes from context:
{statutes}
Context information:
{context}
Answer:"""
        )

    def initialize_llm(self, openai_api_key: str):
        if not openai_api_key:
            raise ValueError("OpenAI API key is required.")
        
        try:
            self.llm = ChatOpenAI(
                temperature=0.2,
                openai_api_key=openai_api_key,
                model_name="gpt-3.5-turbo",
                max_tokens=1500,
                request_timeout=30
            )
            logging.info("OpenAI LLM initialized successfully")
            
            self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
            logging.info("LLMChain created successfully")
        except Exception as e:
            logging.error(f"Failed to initialize OpenAI LLM: {str(e)}")
            raise

    def extract_statutes(self, text: str) -> str:
        """
        Extract statute citations from the given text using a refined regex pattern.
        Returns a string of valid statutes, one per line, or a message if none are found.
        """
        statute_pattern = r'\((?:[A-Za-z\s]+\s*(?:Code|Laws|Statutes|CCP)\s*§\s*[0-9-]+(?:\([a-z0-9]+\))?|[A-Za-z0-9\s]+\s*§\s*[0-9-]+(?:\([a-z0-9]+\))?|[A-Z]{2,3}\s*§\s*[0-9-]+(?:\([a-z0-9]+\))?|[0-9]+\s*ILCS\s*[0-9]+/[0-9-]+(?:\([a-z0-9]+\))?|Title\s*[0-9]+\s*USC\s*§\s*[0-9]+-[0-9]+|[A-Za-z\s]+\s*Laws\s*[0-9]+\s*§\s*[0-9-]+(?:\([a-z0-9]+\))?|[A-Za-z\s]+\s*CCP\s*§\s*[0-9-]+(?:\([a-z0-9]+\))?)\)'
        statutes = re.findall(statute_pattern, text)
        
        valid_statutes = []
        for statute in statutes:
            if '§' in statute and any(char.isdigit() for char in statute) and not re.match(r'\([a-z]\)', statute) and 'found here' not in statute:
                valid_statutes.append(statute)
        
        if valid_statutes:
            seen = set()
            unique_statutes = [statute for statute in valid_statutes if not (statute in seen or seen.add(statute))]
            return "\n".join(unique_statutes)
        return "No statutes found in the context."

    @lru_cache(maxsize=100)
    def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
        logging.info(f"Processing query: '{query}' for state: '{state}' with n_results={n_results}")
        
        if not state:
            logging.warning("No state provided for query")
            return {
                "answer": "Please select a state to proceed with your query.",
                "context_used": "N/A"
            }
        
        if not openai_api_key:
            logging.warning("No OpenAI API key provided")
            return {
                "answer": "Please provide an OpenAI API key to proceed.",
                "context_used": "N/A"
            }
        
        if not self.llm or not self.chain:
            try:
                self.initialize_llm(openai_api_key)
            except Exception as e:
                logging.error(f"Failed to initialize LLM: {str(e)}")
                return {
                    "answer": f"Failed to initialize LLM with the provided API key: {str(e)}",
                    "context_used": "N/A"
                }
        
        # Query the vector database
        try:
            results = self.vector_db.query(query, state=state, n_results=n_results)
            logging.info("Vector database query successful")
            logging.debug(f"Query results: {json.dumps(results, indent=2)}")
        except Exception as e:
            logging.error(f"Vector database query failed: {str(e)}")
            results = {
                "document_results": {"documents": [[]], "metadatas": [[]]},
                "state_results": {"documents": [[]], "metadatas": [[]]}
            }
            logging.info("Applied safeguard: Using empty results due to vector DB failure")
        
        context_parts = []
        
        # Process document results
        if results["document_results"]["documents"] and results["document_results"]["documents"][0]:
            for i, doc in enumerate(results["document_results"]["documents"][0]):
                metadata = results["document_results"]["metadatas"][0][i]
                context_parts.append(f"[{metadata['state']} - Chunk {metadata.get('chunk_id', 'N/A')}] {doc}")
        else:
            logging.warning("No document results found in query response")
        
        # Process state summary results
        if results["state_results"]["documents"] and results["state_results"]["documents"][0]:
            for i, doc in enumerate(results["state_results"]["documents"][0]):
                metadata = results["state_results"]["metadatas"][0][i]
                context_parts.append(f"[{metadata['state']} - Summary] {doc}")
        else:
            logging.warning("No state summary results found in query response")
        
        context = "\n\n---\n\n".join(context_parts) if context_parts else "No relevant context found."
        
        logging.info(f"Raw context for query: {context}")
        
        if not context_parts:
            logging.info("No relevant context found for query")
            # Fallback to general knowledge
            statutes_from_context = "No statutes found in the context."
            try:
                answer = self.chain.invoke({
                    "query": query,
                    "context": "No specific legal documents available.",
                    "state": state,
                    "statutes": statutes_from_context
                })
                return {
                    "answer": answer['text'].strip(),
                    "context_used": context
                }
            except Exception as e:
                logging.error(f"LLM fallback processing failed: {str(e)}")
                return {
                    "answer": "I don’t have sufficient information to answer this accurately, and an error occurred while generating a general response. Please try again.",
                    "context_used": context
                }
        
        statutes_from_context = self.extract_statutes(context)
        logging.info(f"Statutes extracted from context: {statutes_from_context}")
        
        try:
            answer = self.chain.invoke({
                "query": query,
                "context": context,
                "state": state,
                "statutes": statutes_from_context
            })
            logging.info("LLM generated answer successfully")
            logging.debug(f"Raw answer text: {answer['text']}")
        except Exception as e:
            logging.error(f"LLM processing failed: {str(e)}")
            return {
                "answer": "An error occurred while generating the answer. Please try again.",
                "context_used": context
            }
        
        return {
            "answer": answer['text'].strip(),
            "context_used": context
        }

    def get_states(self) -> List[str]:
        try:
            states = self.vector_db.get_states()
            logging.info(f"Retrieved {len(states)} states from database")
            return states
        except Exception as e:
            logging.error(f"Failed to get states: {str(e)}")
            return []

    def load_pdf(self, pdf_path: str) -> int:
        try:
            num_states = self.vector_db.process_and_load_pdf(pdf_path)
            logging.info(f"Loaded PDF with {num_states} states")
            return num_states
        except Exception as e:
            logging.error(f"Failed to load PDF: {str(e)}")
            return 0

    def gradio_interface(self):
        def query_interface(api_key: str, query: str, state: str) -> str:
            if not api_key:
                logging.warning("No OpenAI API key provided in interface")
                return "⚠️ **Error:** Please provide an OpenAI API key to proceed."
            if not state:
                logging.warning("No state selected in interface")
                return "⚠️ **Error:** Please select a state to proceed with your query."
            result = self.process_query(query, state=state, openai_api_key=api_key)
            
            return f"### Answer:\n{result['answer']}"

        states = self.get_states()
        
        # Define the inputs
        api_key_input = gr.Textbox(
            label="Open AI API Key",
            type="password",
            placeholder="e.g., sk-abc123",
            elem_classes="input-field"
        )
        query_input = gr.Textbox(
            label="Query",
            placeholder="e.g., What are the eviction rules?",
            lines=3,
            elem_classes="input-field"
        )
        state_input = gr.Dropdown(
            label="Select a state (required)",
            choices=states,
            value=None,
            allow_custom_value=False,
            elem_classes="input-field"
        )

        # Define the example queries (only for query and state)
        example_queries = [
            ["What is the rent due date law?", "California"],
            ["What are the rules for security deposit returns?", "New York"],
            ["Can a landlord enter without notice?", "Texas"],
            ["What are the eviction notice requirements?", "Florida"],
            ["Are there rent control laws?", "Oregon"]
        ]

        custom_css = """
            .gr-form {
                max-width: 900px;
                margin: 0 auto;
                padding: 20px;
                background-color: #ffffff;
                border-radius: 15px;
                box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
            }
            .gr-title {
                font-size: 3em;
                font-weight: bold;
                color: #2c3e50;
                text-align: center;
                margin-bottom: 10px;
            }
            .gr-description {
                font-size: 1.1em;
                color: #7f8c8d;
                text-align: center;
                margin-bottom: 30px;
            }
            .footnote {
                font-size: 1.1em;
                color: #34495e;
                text-align: center;
                margin-top: 20px;
                padding-top: 10px;
                border-top: 1px solid #e0e0e0;
            }
            .footnote a {
                color: #3498db;
                text-decoration: none;
                transition: color 0.3s ease;
            }
            .footnote a:hover {
                color: #2980b9;
                text-decoration: underline;
            }
            .gr-textbox, .gr-dropdown {
                border: 1px solid #dcdcdc !important;
                border-radius: 8px !important;
                padding: 12px !important;
                font-size: 1em !important;
                transition: border-color 0.3s ease;
            }
            .gr-textbox:focus, .gr-dropdown:focus {
                border-color: #3498db !important;
                box-shadow: 0 0 5px rgba(52, 152, 219, 0.3) !important;
            }
            .gr-textbox label, .gr-dropdown label {
                font-weight: 600;
                color: #34495e;
                margin-bottom: 8px;
            }
            .gr-button-primary {
                background-color: #3498db !important;
                border: none !important;
                padding: 12px 30px !important;
                font-weight: bold !important;
                font-size: 1em !important;
                border-radius: 8px !important;
                transition: background-color 0.3s ease, transform 0.1s ease;
            }
            .gr-button-primary:hover {
                background-color: #2980b9 !important;
                transform: translateY(-2px);
            }
            .gr-button-secondary {
                background-color: #95a5a6 !important;
                border: none !important;
                padding: 12px 30px !important;
                font-weight: bold !important;
                font-size: 1em !important;
                border-radius: 8px !important;
                transition: background-color 0.3s ease;
            }
            .gr-button-secondary:hover {
                background-color: #7f8c8d !important;
            }
            .output-markdown {
                background-color: #f9f9f9 !important;
                color: #2c3e50 !important;
                padding: 25px !important;
                border-radius: 10px !important;
                border: 1px solid #e0e0e0 !important;
                font-size: 1.1em !important;
                line-height: 1.8 !important;
                box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05);
            }
            .gr-examples {
                background-color: #ecf0f1;
                padding: 15px;
                border-radius: 10px;
                margin-top: 20px;
            }
            .gr-examples table {
                background-color: transparent !important;
            }
            @media (prefers-color-scheme: dark) {
                .gr-form {
                    background-color: #2c3e50;
                    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3);
                }
                .gr-title {
                    color: #ecf0f1;
                }
                .gr-description {
                    color: #bdc3c7;
                }
                .footnote {
                    color: #bdc3c7;
                    border-top: 1px solid #7f8c8d;
                }
                .footnote a {
                    color: #66b0ff;
                }
                .footnote a:hover {
                    color: #4a90e2;
                }
                .gr-textbox, .gr-dropdown {
                    background-color: #34495e !important;
                    color: #ecf0f1 !important;
                    border-color: #7f8c8d !important;
                }
                .gr-textbox label, .gr-dropdown label {
                    color: #ecf0f1;
                }
                .output-markdown {
                    background-color: #34495e !important;
                    color: #ecf0f1 !important;
                    border-color: #7f8c8d !important;
                }
                .gr-examples {
                    background-color: #3e5367;
                }
            }
            @media (max-width: 600px) {
                .gr-form {
                    padding: 15px;
                }
                .gr-title {
                    font-size: 2.2em;
                }
                .gr-description {
                    font-size: 1em;
                }
                .footnote {
                    font-size: 1em;
                }
                .gr-textbox, .gr-dropdown {
                    font-size: 0.9em !important;
                }
                .gr-button-primary, .gr-button-secondary {
                    padding: 10px 20px !important;
                    font-size: 0.9em !important;
                }
                .output-markdown {
                    font-size: 1em !important;
                    padding: 15px !important;
                }
            }
        """

        with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
            gr.Markdown(
                """
                # 🏠 Landlord-Tenant Rights Bot
                Ask questions about tenant rights and landlord-tenant laws based on state-specific legal documents. Provide your OpenAI API key, select a state, and enter your question below. You can get an API key from [OpenAI](https://platform.openai.com/api-keys).

                # <div class='footnote'>Developed by Nischal Subedi. Follow me on <a href='https://www.linkedin.com/in/nischal1/' target='_blank'>LinkedIn</a> or read my insights on <a href='https://datascientistinsights.substack.com/' target='_blank'>Substack</a>.</div>
                """
            )

            with gr.Column(elem_classes="gr-form"):
                api_key_input = gr.Textbox(
                    label="Open AI API Key",
                    type="password",
                    placeholder="e.g., sk-abc123",
                    elem_classes="input-field"
                )
                query_input = gr.Textbox(
                    label="Query",
                    placeholder="e.g., What are the eviction rules?",
                    lines=3,
                    elem_classes="input-field"
                )
                state_input = gr.Dropdown(
                    label="Select a state (required)",
                    choices=states,
                    value=None,
                    allow_custom_value=False,
                    elem_classes="input-field"
                )

                with gr.Row():
                    clear_button = gr.Button("Clear", variant="secondary")
                    submit_button = gr.Button("Submit", variant="primary")

                output = gr.Markdown(
                    label="Response",
                    elem_classes="output-markdown"
                )

                gr.Examples(
                    examples=example_queries,
                    inputs=[query_input, state_input],
                    outputs=output,
                    fn=query_interface,
                    examples_per_page=5
                )

            submit_button.click(
                fn=query_interface,
                inputs=[api_key_input, query_input, state_input],
                outputs=output
            )
            clear_button.click(
                fn=lambda: ("", "", None, ""),
                inputs=[],
                outputs=[api_key_input, query_input, state_input, output]
            )

        return demo

if __name__ == "__main__":
    try:
        rag = RAGSystem()
        
        pdf_path = "data/tenant-landlord.pdf"
        rag.load_pdf(pdf_path)
        
        demo = rag.gradio_interface()
        demo.launch(share=True)
        
    except Exception as e:
        logging.error(f"Main execution failed: {str(e)}")
        raise