File size: 42,242 Bytes
b9756ef
 
bfee845
b9756ef
bfee845
 
ea0c3e1
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
 
ea0c3e1
0634f1a
 
 
 
 
 
 
7c7cb71
 
 
 
ea0c3e1
0634f1a
b9756ef
0634f1a
 
 
 
 
 
 
b9756ef
 
 
 
 
bfee845
7c7cb71
b9756ef
0634f1a
 
 
 
 
 
 
 
7c7cb71
b9756ef
 
7c7cb71
b9756ef
bfee845
b9756ef
bfee845
b9756ef
bfee845
 
b9756ef
bfee845
 
 
b9756ef
bfee845
ea0c3e1
7c7cb71
0634f1a
bfee845
7c7cb71
 
0634f1a
 
bfee845
0634f1a
 
bfee845
7c7cb71
 
0634f1a
bfee845
0634f1a
ea0c3e1
bfee845
 
 
0634f1a
 
 
 
 
 
 
 
bfee845
0634f1a
 
 
 
 
b9756ef
0634f1a
 
 
 
 
 
 
b9756ef
0634f1a
 
 
 
 
 
 
 
bfee845
0634f1a
bfee845
0634f1a
bfee845
 
 
0634f1a
 
bfee845
0634f1a
bfee845
 
 
 
0634f1a
bfee845
 
 
 
 
0634f1a
 
bfee845
0634f1a
 
bfee845
 
 
0634f1a
 
 
 
 
 
bfee845
0634f1a
 
 
bfee845
 
0634f1a
 
 
bfee845
b9756ef
0634f1a
 
 
bfee845
 
 
0634f1a
 
 
 
bfee845
0634f1a
bfee845
b9756ef
bfee845
0634f1a
 
bfee845
0634f1a
 
bfee845
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
bfee845
0634f1a
 
7c7cb71
b9756ef
 
 
bfee845
0634f1a
 
 
 
 
b9756ef
0634f1a
 
ea0c3e1
b9756ef
bfee845
0634f1a
 
b9756ef
0634f1a
 
 
 
 
 
 
 
 
 
bfee845
0634f1a
 
 
b9756ef
bfee845
0634f1a
bfee845
b9756ef
0634f1a
7c7cb71
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
bfee845
 
0634f1a
 
7c7cb71
0634f1a
 
 
 
 
bfee845
0634f1a
 
 
 
 
 
bfee845
 
 
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
0634f1a
 
 
 
 
 
 
 
 
 
4c5479b
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c5479b
 
0634f1a
 
 
7c7cb71
0634f1a
 
 
 
 
 
 
 
b9756ef
7c7cb71
0634f1a
 
 
 
 
7c7cb71
0634f1a
 
 
 
 
7c7cb71
 
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfee845
0634f1a
 
229d1b2
 
0634f1a
 
 
 
 
229d1b2
0634f1a
7c7cb71
0634f1a
7c7cb71
bfee845
0634f1a
7c7cb71
0634f1a
7c7cb71
0634f1a
 
 
 
 
7c7cb71
 
 
0634f1a
 
bfee845
0634f1a
ea0c3e1
0634f1a
b9756ef
0634f1a
90b9e68
 
bfee845
0634f1a
 
bfee845
0634f1a
 
bfee845
0634f1a
 
bfee845
0634f1a
 
 
 
 
 
 
 
 
 
 
 
bfee845
 
0634f1a
 
 
 
 
 
 
 
 
 
 
bfee845
 
 
 
cac7e1a
0634f1a
 
 
 
 
 
 
 
 
bfee845
 
0634f1a
 
 
 
 
bfee845
0634f1a
 
 
 
 
 
 
 
 
 
 
 
 
b9756ef
bfee845
0634f1a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
import os
import logging
from typing import Dict, List, Optional
from functools import lru_cache
import re

import gradio as gr
try:
    from vector_db import VectorDatabase
except ImportError:
    print("Error: Could not import VectorDatabase from vector_db.py.")
    print("Please ensure vector_db.py exists in the same directory and is correctly defined.")
    exit(1)

try:
    from langchain_openai import ChatOpenAI
except ImportError:
    print("Error: langchain-openai not found. Please install it: pip install langchain-openai")
    exit(1)

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

# Suppress warnings
import warnings
warnings.filterwarnings("ignore", category=SyntaxWarning)
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*")
warnings.filterwarnings("ignore", category=DeprecationWarning)

# Enhanced logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
)

# --- RAGSystem Class ---
class RAGSystem:
    # (Keep the RAGSystem class exactly the same as in the previous version)
    # ... __init__ ...
    # ... extract_statutes ...
    # ... process_query_cached ...
    # ... process_query ...
    # ... get_states ...
    # ... load_pdf ...
    def __init__(self, vector_db: Optional[VectorDatabase] = None):
        logging.info("Initializing RAGSystem")
        self.vector_db = vector_db if vector_db else VectorDatabase()
        self.llm = None
        self.chain = None
        self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.

Instructions:
* Use the context and statutes as the primary basis for your answer when available.
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
* Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
* If multiple statutes apply, list all relevant ones.
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
* Include practical examples or scenarios to enhance clarity and usefulness.
* Use bullet points or numbered lists for readability when appropriate.
* Maintain a professional and neutral tone.

Question: {query}
State: {state}
Statutes from context:
{statutes}

Context information:
--- START CONTEXT ---
{context}
--- END CONTEXT ---

Answer:"""
        self.prompt_template = PromptTemplate(
            input_variables=["query", "context", "state", "statutes"],
            template=self.prompt_template_str
        )
        logging.info("RAGSystem initialized.")

    def extract_statutes(self, text: str) -> str:
        statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b'
        statutes = re.findall(statute_pattern, text, re.IGNORECASE)
        valid_statutes = []
        for statute in statutes:
            statute = statute.strip()
            if '§' in statute and any(char.isdigit() for char in statute):
                 if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
                    if len(statute) > 5:
                        valid_statutes.append(statute)

        if valid_statutes:
            seen = set()
            unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))]
            logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
            return "\n".join(f"- {s}" for s in unique_statutes)

        logging.info("No statutes found matching the pattern in the context.")
        return "No specific statutes found in the provided context."

    @lru_cache(maxsize=50)
    def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
        logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}")

        if not state or state == "Select a state..." or "Error" in state:
            logging.warning("No valid state provided for query.")
            return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"}
        if not query or not query.strip():
            logging.warning("No query provided.")
            return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"}
        if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"):
            logging.warning("No valid OpenAI API key provided.")
            return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"}

        try:
            logging.info("Initializing temporary LLM and Chain for this query...")
            temp_llm = ChatOpenAI(
                temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo",
                max_tokens=1500, request_timeout=45
            )
            temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template)
            logging.info("Temporary LLM and Chain initialized successfully.")
        except Exception as e:
            logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True)
            error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity."
            if "authentication" in str(e).lower():
                error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key."
            return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"}

        context = "No relevant context found."
        statutes_from_context = "Statute retrieval skipped due to context issues."
        try:
            logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...")
            results = self.vector_db.query(query, state=state, n_results=n_results)
            logging.info(f"Vector DB query successful for state '{state}'. Processing results...")

            context_parts = []
            doc_results = results.get("document_results", {})
            docs = doc_results.get("documents", [[]])[0]
            metadatas = doc_results.get("metadatas", [[]])[0]
            if docs and metadatas and len(docs) == len(metadatas):
                logging.info(f"Found {len(docs)} document chunks.")
                for i, doc_content in enumerate(docs):
                    metadata = metadatas[i]
                    state_label = metadata.get('state', 'Unknown State')
                    chunk_id = metadata.get('chunk_id', 'N/A')
                    context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}")

            state_results_data = results.get("state_results", {})
            state_docs = state_results_data.get("documents", [[]])[0]
            state_metadatas = state_results_data.get("metadatas", [[]])[0]
            if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
                logging.info(f"Found {len(state_docs)} state summary documents.")
                for i, state_doc_content in enumerate(state_docs):
                    metadata = state_metadatas[i]
                    state_label = metadata.get('state', state)
                    context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}")

            if context_parts:
                context = "\n\n---\n\n".join(context_parts)
                logging.info(f"Constructed context with {len(context_parts)} parts. Length: {len(context)} chars.")
                try:
                    statutes_from_context = self.extract_statutes(context)
                except Exception as e:
                    logging.error(f"Error extracting statutes: {e}", exc_info=True)
                    statutes_from_context = "Error extracting statutes from context."
            else:
                logging.warning("No relevant context parts found from vector DB query.")
                context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge."
                statutes_from_context = "No specific statutes found as no context was retrieved."

        except Exception as e:
            logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True)
            context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate."
            statutes_from_context = "Statute retrieval skipped due to error retrieving context."

        try:
            logging.info("Invoking LLMChain with constructed input...")
            llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context}
            answer_dict = temp_chain.invoke(llm_input)
            answer_text = answer_dict.get('text', '').strip()

            if not answer_text:
                logging.warning("LLM returned an empty answer.")
                answer_text = "<div class='error-message'>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>"
            else:
                logging.info("LLM generated answer successfully.")

            return {"answer": answer_text, "context_used": context}

        except Exception as e:
            logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
            error_message = "Error: AI answer generation failed."
            details = f"Details: {str(e)}"
            if "authentication" in str(e).lower():
                error_message = "Error: Authentication failed. Please double-check your OpenAI API key."
                details = ""
            elif "rate limit" in str(e).lower():
                error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again."
                details = ""
            elif "context length" in str(e).lower():
                error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context."
                details = "Try simplifying your question or asking about a more specific aspect."
            elif "timeout" in str(e).lower():
                 error_message = "Error: The request to the AI model timed out. The service might be busy."
                 details = "Please try again in a few moments."

            formatted_error = f"<div class='error-message'>{error_message}</div>"
            if details:
                formatted_error += f"<div class='error-details'>{details}</div>"

            return {"answer": formatted_error, "context_used": context}

    def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
        return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results)

    def get_states(self) -> List[str]:
        try:
            states = self.vector_db.get_states()
            if not states:
                logging.warning("No states retrieved from vector_db. Returning empty list.")
                return []
            valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state...")))
            logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.")
            return valid_states
        except Exception as e:
            logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True)
            return ["Error: Could not load states"]

    def load_pdf(self, pdf_path: str) -> int:
        if not os.path.exists(pdf_path):
            logging.error(f"PDF file not found at path: {pdf_path}")
            raise FileNotFoundError(f"PDF file not found: {pdf_path}")
        try:
            logging.info(f"Attempting to load/verify data from PDF: {pdf_path}")
            num_states_processed = self.vector_db.process_and_load_pdf(pdf_path)
            doc_count = self.vector_db.document_collection.count()
            state_count = self.vector_db.state_collection.count()
            total_items = doc_count + state_count

            if total_items > 0:
                logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.")
                current_states = self.get_states()
                return len(current_states) if current_states and "Error" not in current_states[0] else 0
            else:
                logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.")
                return 0

        except Exception as e:
            logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
            raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e


    # --- GRADIO INTERFACE ---
    def gradio_interface(self):
        # Wrapper function for the Gradio interface logic
        def query_interface_wrapper(api_key: str, query: str, state: str) -> str:
            logging.info(f"Gradio interface received query: '{query[:50]}...', state: '{state}'")

            # Re-validate inputs robustly
            if not api_key or not api_key.strip() or not api_key.startswith("sk-"):
                 return "<div class='error-message'>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get one here</a>.</div>"
            if not state or state == "Select a state..." or "Error" in state:
                return "<div class='error-message'>Please select a valid state from the dropdown.</div>"
            if not query or not query.strip():
                return "<div class='error-message'>Please enter your question in the text box.</div>"

            # Call the core processing logic
            result = self.process_query(query=query, state=state, openai_api_key=api_key)

            # Format the response for display
            answer = result.get("answer", "<div class='error-message'>An unexpected error occurred, and no answer was generated. Please check the logs or try again.</div>")

            # Add a header *only* if the answer is not an error message itself
            if not "<div class='error-message'>" in answer:
                 formatted_response = f"<h3 class='response-header'>Response for {state}</h3><hr class='divider'>{answer}"
            else:
                 formatted_response = answer # Pass through error messages directly

            # Log context length for debugging (optional)
            context_used = result.get("context_used", "N/A")
            if isinstance(context_used, str) and "N/A" not in context_used:
                logging.debug(f"Context length used for query: {len(context_used)} characters.")
            else:
                logging.debug(f"No context was used or available for this query ({context_used}).")

            return formatted_response

        # --- Get Available States for Dropdown ---
        try:
            available_states_list = self.get_states()
            if not available_states_list or "Error" in available_states_list[0]:
                dropdown_choices = ["Error: Could not load states"]
                initial_value = dropdown_choices[0]
                logging.error("Could not load states for dropdown. UI will show error.")
            else:
                dropdown_choices = ["Select a state..."] + available_states_list
                initial_value = dropdown_choices[0]
        except Exception as e:
            logging.error(f"Unexpected critical error getting states: {e}", exc_info=True)
            dropdown_choices = ["Error: Critical failure loading states"]
            initial_value = dropdown_choices[0]

        # --- Prepare Example Queries ---
        example_queries_base = [
            ["What are the rules for security deposit returns?", "California"],
            ["Can a landlord enter my apartment without notice?", "New York"],
            ["My landlord hasn't made necessary repairs. What can I do?", "Texas"],
            ["What are the limits on rent increases in my state?", "Florida"],
            ["Is my lease automatically renewed if I don't move out?", "Illinois"],
            ["What happens if I break my lease early?", "Washington"]
        ]
        example_queries = []
        if available_states_list and "Error" not in available_states_list[0]:
            loaded_states_set = set(available_states_list)
            example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set]
        if not example_queries:
             fallback_state = available_states_list[0] if available_states_list and "Error" not in available_states_list[0] else "California"
             example_queries.append(["What basic rights do tenants have?", fallback_state])

        # --- Refined Custom CSS ---
        # Focus: Unified background, distinct white cards, proper centering, refined examples table
        custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');

        /* --- Base & Body --- */
        body, .gradio-container {
            font-family: 'Roboto', sans-serif !important;
            background-color: #F5F7FA !important; /* Light grey base background */
            color: #1F2A44;
            margin: 0;
            padding: 0;
            min-height: 100vh;
            font-size: 16px; /* Base font size */
            -webkit-font-smoothing: antialiased;
            -moz-osx-font-smoothing: grayscale;
        }
        * {
             box-sizing: border-box;
        }

        /* --- Main Content Container --- */
        .gradio-container > .flex.flex-col { /* Target the main content column */
            max-width: 960px; /* Slightly wider max-width */
            margin: 0 auto !important; /* Center the column */
            padding: 3rem 1.5rem !important; /* More vertical padding */
            gap: 2.5rem !important; /* Consistent gap between sections */
            background-color: transparent !important; /* Ensure container itself is transparent */
        }

        /* --- Card Styling (Applied to Groups) --- */
        .card-style {
            background-color: #FFFFFF !important; /* White background for cards */
            border: 1px solid #E5E7EB !important; /* Subtle border */
            border-radius: 12px !important;
            padding: 2rem !important; /* Consistent padding inside cards */
            box-shadow: 0 4px 12px rgba(101, 119, 134, 0.08) !important; /* Refined shadow */
            overflow: hidden; /* Prevent content spill */
        }
        /* Remove default Gradio Group padding if using custom padding */
        .gradio-group {
            padding: 0 !important;
            border: none !important;
            background: none !important;
            box-shadow: none !important;
        }

        /* --- Header Section --- */
        .header-section {
            background-color: transparent !important; /* Header blends */
            padding: 1rem 0 !important;
            text-align: center !important; /* Center align all content */
            border: none !important;
            box-shadow: none !important;
        }
        .header-logo {
            font-size: 2.8rem;
            color: #2563EB;
            margin-bottom: 0.75rem;
            display: block; /* Ensure centering */
        }
        .header-title {
            font-size: 2rem; /* Larger title */
            font-weight: 700;
            color: #111827; /* Darker title */
            margin: 0 0 0.25rem 0;
        }
        .header-tagline {
            font-size: 1.1rem;
            color: #4B5563;
            margin: 0;
        }

        /* --- Introduction Section --- */
        /* Uses card-style defined above */
        .intro-card h3 {
            font-size: 1.5rem;
            font-weight: 600;
            color: #0369A1; /* Blue heading */
            margin: 0 0 1rem 0;
            padding-bottom: 0.5rem;
            border-bottom: 1px solid #E0F2FE; /* Light blue underline */
        }
        .intro-card p {
            font-size: 1rem;
            line-height: 1.6;
            color: #374151; /* Standard text color */
            margin: 0 0 0.75rem 0;
        }
        .intro-card a {
            color: #0369A1;
            text-decoration: underline;
            font-weight: 500;
        }
        .intro-card a:hover { color: #0284C7; }
        .intro-card strong { font-weight: 600; color: #1F2A44; }

        /* --- Input Form Section --- */
        /* Uses card-style */
        .input-form-card h3 {
            font-size: 1.4rem;
            font-weight: 600;
            color: #1F2A44;
            margin: 0 0 1.75rem 0;
            padding-bottom: 0.75rem;
            border-bottom: 1px solid #E5E7EB;
        }
        .input-field-group { margin-bottom: 1.5rem; }
        .input-row { display: flex; gap: 1.5rem; flex-wrap: wrap; margin-bottom: 1.5rem; }
        .input-field { flex: 1; min-width: 220px; }

        /* Input Elements */
        .gradio-textbox textarea, .gradio-dropdown select, .gradio-textbox input[type=password] {
            border: 1px solid #D1D5DB !important;
            border-radius: 8px !important;
            padding: 0.8rem 1rem !important;
            font-size: 1rem !important; /* Make inputs slightly larger */
            background-color: #F9FAFB !important;
            color: #1F2A44 !important;
            transition: border-color 0.2s ease, box-shadow 0.2s ease;
            width: 100% !important;
        }
        .gradio-textbox textarea { min-height: 90px; }
        .gradio-textbox textarea:focus, .gradio-dropdown select:focus, .gradio-textbox input[type=password]:focus {
            border-color: #2563EB !important;
            box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.15) !important;
            outline: none !important;
            background-color: #FFFFFF !important;
        }
        .gradio-input-label, .gradio-output-label { /* Label styling */
            font-size: 0.9rem !important;
            font-weight: 500 !important;
            color: #374151 !important;
            margin-bottom: 0.5rem !important;
            display: block !important;
        }
        .gradio-input-info { /* Info text */
            font-size: 0.85rem !important;
            color: #6B7280 !important;
            margin-top: 0.3rem;
        }

        /* Buttons */
        .button-row { display: flex; gap: 1rem; margin-top: 1.5rem; flex-wrap: wrap; justify-content: flex-end; }
        .gradio-button {
            border-radius: 8px !important; padding: 0.75rem 1.5rem !important; font-size: 0.95rem !important;
            font-weight: 500 !important; border: none !important; cursor: pointer;
            transition: background-color 0.2s ease, transform 0.1s ease, box-shadow 0.2s ease;
        }
        .gradio-button:hover:not(:disabled) { transform: translateY(-1px); box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); }
        .gradio-button:active:not(:disabled) { transform: scale(0.98); box-shadow: none; }
        .gradio-button:disabled { background: #E5E7EB !important; color: #9CA3AF !important; cursor: not-allowed; }
        .gr-button-primary { background-color: #2563EB !important; color: #FFFFFF !important; }
        .gr-button-primary:hover:not(:disabled) { background-color: #1D4ED8 !important; }
        .gr-button-secondary { background-color: #F3F4F6 !important; color: #374151 !important; border: 1px solid #D1D5DB !important; }
        .gr-button-secondary:hover:not(:disabled) { background-color: #E5E7EB !important; border-color: #9CA3AF !important; }

        /* --- Output Section --- */
        /* Uses card-style */
        .output-card .response-header { /* Style the H3 we add in Python */
            font-size: 1.3rem;
            font-weight: 600;
            color: #1F2A44;
            margin: 0 0 0.75rem 0;
        }
        .output-card .divider { /* Style the HR we add */
            border: none; border-top: 1px solid #E5E7EB; margin: 1rem 0 1.5rem 0;
        }
        .output-card .output-content-wrapper { /* Wrapper for the markdown content */
            font-size: 1rem; line-height: 1.7; color: #374151;
        }
        .output-card .output-content-wrapper p { margin-bottom: 1rem; }
        .output-card .output-content-wrapper ul, .output-card .output-content-wrapper ol { margin-left: 1.5rem; margin-bottom: 1rem; padding-left: 1rem; }
        .output-card .output-content-wrapper li { margin-bottom: 0.5rem; }
        .output-card .output-content-wrapper strong, .output-card .output-content-wrapper b { font-weight: 600; color: #111827; }
        .output-card .output-content-wrapper a { color: #2563EB; text-decoration: underline; }
        .output-card .output-content-wrapper a:hover { color: #1D4ED8; }

        /* Error message styling */
        .output-card .error-message {
            background-color: #FEF2F2; border: 1px solid #FECACA; border-left: 4px solid #F87171;
            border-radius: 8px; padding: 1rem 1.25rem; color: #B91C1C; font-weight: 500; margin-top: 0.5rem;
        }
        .output-card .error-details { font-size: 0.9rem; color: #991B1B; margin-top: 0.5rem; font-style: italic; }
        /* Placeholder text */
        .output-card .placeholder { color: #9CA3AF; font-style: italic; text-align: center; padding: 2rem 1rem; display: block; }

        /* --- Examples Section --- */
        /* Uses card-style */
        .examples-card .gr-examples-header { /* Style the header Gradio adds */
            font-size: 1.3rem !important; font-weight: 600 !important; color: #1F2A44 !important;
            margin: 0 0 1.5rem 0 !important; padding-bottom: 0.75rem !important; border-bottom: 1px solid #E5E7EB !important;
        }
        /* Style the TABLE generated by gr.Examples */
        .examples-card .gr-examples-table { border-collapse: collapse !important; width: 100% !important; }
        .examples-card .gr-examples-table th,
        .examples-card .gr-examples-table td {
            text-align: left !important; padding: 0.75rem 1rem !important;
            border: 1px solid #E5E7EB !important; font-size: 0.95rem !important;
            color: #374151 !important; background-color: transparent !important;
        }
        .examples-card .gr-examples-table th {
             font-weight: 500 !important; background-color: #F9FAFB !important; color: #1F2A44 !important;
        }
        /* Style the example *rows* when clickable */
         .examples-card .gr-examples-table tr { cursor: pointer; transition: background-color 0.2s ease; }
         .examples-card .gr-examples-table tr:hover td { background-color: #F3F4F6 !important; }

        /* --- Footer Section --- */
        .footer-section {
            background-color: transparent !important;
            border-top: 1px solid #E5E7EB !important;
            padding: 2rem 1rem !important;
            margin-top: 1rem !important; /* Space above footer */
            text-align: center !important;
            color: #6B7280 !important;
            font-size: 0.9rem !important;
            line-height: 1.6 !important;
            box-shadow: none !important; border-radius: 0 !important;
        }
        .footer-section strong { color: #374151; font-weight: 500; }
        .footer-section a { color: #2563EB; text-decoration: none; font-weight: 500; }
        .footer-section a:hover { color: #1D4ED8; text-decoration: underline; }

        /* --- Accessibility & Focus --- */
        :focus-visible {
             outline: 2px solid #2563EB !important;
             outline-offset: 2px;
             box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.2) !important;
        }
        /* Remove default Gradio focus on button internal span */
        .gradio-button span:focus { outline: none !important; }

        /* --- Responsive Adjustments --- */
        @media (max-width: 768px) {
            .gradio-container > .flex.flex-col { padding: 2rem 1rem !important; gap: 2rem !important; }
            .card-style { padding: 1.5rem !important; }
            .header-title { font-size: 1.8rem; }
            .header-tagline { font-size: 1rem; }
            .input-row { flex-direction: column; gap: 1rem; margin-bottom: 1rem; }
            .button-row { justify-content: center; }
        }
        @media (max-width: 480px) {
             body { font-size: 15px; }
            .gradio-container > .flex.flex-col { padding: 1.5rem 1rem !important; gap: 1.5rem !important; }
            .card-style { padding: 1.25rem !important; border-radius: 10px !important;}
            .header-logo { font-size: 2.5rem; margin-bottom: 0.5rem;}
            .header-title { font-size: 1.5rem; }
            .header-tagline { font-size: 0.95rem; }
            .intro-card h3, .input-form-card h3, .output-card .response-header, .examples-card .gr-examples-header { font-size: 1.2rem !important; margin-bottom: 1rem !important; }
            .gradio-textbox textarea, .gradio-dropdown select, .gradio-textbox input[type=password] { font-size: 0.95rem !important; padding: 0.75rem !important; }
            .gradio-button { width: 100%; padding: 0.7rem 1.2rem !important; font-size: 0.9rem !important; }
            .button-row { flex-direction: column; gap: 0.75rem; }
            .footer-section { font-size: 0.85rem; padding: 1.5rem 1rem !important; }
             .examples-card .gr-examples-table th, .examples-card .gr-examples-table td { padding: 0.6rem 0.8rem !important; font-size: 0.9rem !important;}
        }

        /* Gradio Specific Overrides (Use sparingly) */
        /* Force main container gap */
        .gradio-container > .flex { gap: 2.5rem !important; }
        /* Ensure no weird margins collapse */
        .gradio-markdown > *:first-child { margin-top: 0; }
        .gradio-markdown > *:last-child { margin-bottom: 0; }
        /* Remove border from dropdown wrapper if needed */
        .gradio-dropdown { border: none !important; padding: 0 !important; }
        /* Remove border from textbox wrapper */
        .gradio-textbox { border: none !important; padding: 0 !important; }
        """

        # --- Gradio Blocks Layout ---
        with gr.Blocks(css=custom_css, title="Landlord-Tenant Rights Assistant") as demo:
            # The main container class is applied implicitly by Gradio, CSS targets it

            # Header Section (No Card Style)
            with gr.Group(elem_classes="header-section"): # Use Group for structure, styled via class
                gr.Markdown(
                    """
                    <span class="header-logo">⚖️</span>
                    <h1 class="header-title">Landlord-Tenant Rights Assistant</h1>
                    <p class="header-tagline">Your AI-powered guide to U.S. landlord-tenant laws</p>
                    """, elem_id="app-title"
                )

            # Introduction Section (Card Style)
            with gr.Group(elem_classes="card-style intro-card"):
                gr.Markdown(
                    """
            <h3 style="text-align: center;">Discover Your Rights</h3>

            <p>Get accurate, AI-powered answers to your questions about landlord-tenant laws. Select your state, provide an <strong>OpenAI API key</strong>, and ask your question below.</p>
            <p>Need an API key? <a href='https://platform.openai.com/api-keys' target='_blank'>Get one free here</a> from OpenAI.</p>
            <p><strong>Note:</strong> This tool is for informational purposes only. Always consult a licensed attorney for legal advice specific to your situation.</p>
                    """,
                    elem_id="app-description"
                )

            # Examples Section (Card Style)

            # Input Form Section (Card Style)
            with gr.Group(elem_classes="card-style input-form-card"):
                gr.Markdown("<h3>Query Section</h3>", elem_id="form-heading")

                with gr.Column(elem_classes="input-field-group"):
                     api_key_input = gr.Textbox(
                         label="OpenAI API Key", type="password",
                         placeholder="Enter your API key (e.g., sk-...)",
                         info="Required to process your question. Securely used per request, not stored.",
                         elem_id="api-key-input", lines=1
                     )

                with gr.Row(elem_classes="input-row"):
                     with gr.Column(elem_classes="input-field"):
                         query_input = gr.Textbox(
                             label="Curious about landlord-tenant laws in your state? Ask away!",
                             placeholder="E.g., What are the rules for security deposit returns in my state?",
                             lines=4, max_lines=8, elem_id="query-input"
                         )
                     with gr.Column(elem_classes="input-field"):
                        state_input = gr.Dropdown(
                            label="Select State", choices=dropdown_choices, value=initial_value,
                            allow_custom_value=False, elem_id="state-dropdown"
                         )

                with gr.Row(elem_classes="button-row"):
                    clear_button = gr.Button(
                        "Clear Inputs", variant="secondary", elem_id="clear-button",
                        elem_classes=["gr-button-secondary"]
                    )
                    submit_button = gr.Button(
                        "Submit Question", variant="primary", elem_id="submit-button",
                        elem_classes=["gr-button-primary"]
                    )

            # Output Section (Card Style)
            with gr.Group(elem_classes="card-style output-card"):
                # Wrap the output markdown for better targeting if needed
                with gr.Column(): # Add column wrapper if needed for spacing/styling
                    output = gr.Markdown(
                        value="<div class='placeholder'>The response will appear here after submitting a question.</div>",
                        elem_id="output-content",
                        elem_classes="output-content-wrapper" # Apply styling to this wrapper
                    )

            # Example Questions Section (Card Style)
            if example_queries:
                with gr.Group(elem_classes="card-style examples-card"):
                     gr.Examples(
                         examples=example_queries,
                         inputs=[query_input, state_input],
                         label="Example Sample Questions", # Uses .gr-examples-header class
                         examples_per_page=6
                     )
            else:
                 with gr.Group(elem_classes="card-style examples-card"): # Still use card style for consistency
                    gr.Markdown(
                        "<div class='placeholder'>Sample questions could not be loaded. Please ensure states are available.</div>"
                    )

            # Footer Section (No Card Style)
            with gr.Group(elem_classes="footer-section"):
                gr.Markdown(
                    """
                    **Disclaimer**: This tool is for informational purposes only and does not constitute legal advice.
                    <br><br>
                    Developed by **Nischal Subedi**. Connect on <a href="https://www.linkedin.com/in/nischal1/" target="_blank">LinkedIn</a> or explore insights at <a href="https://datascientistinsights.substack.com/" target="_blank">Substack</a>.
                    """, elem_id="app-footer"
                )

            # --- Event Listeners ---
            submit_button.click(
                fn=query_interface_wrapper,
                inputs=[api_key_input, query_input, state_input],
                outputs=output,
                api_name="submit_query"
            )

            clear_button.click(
                fn=lambda: (
                    "", "", initial_value,
                    "<div class='placeholder'>Inputs cleared. Ready for your next question.</div>"
                ),
                inputs=[],
                outputs=[api_key_input, query_input, state_input, output]
            )

        logging.info("Refined Gradio interface created successfully.")
        return demo

# --- Main Execution Block ---
if __name__ == "__main__":
    logging.info("Starting Landlord-Tenant Rights Bot application...")
    try:
        SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
        DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf")
        DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db")

        PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH)
        VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH)

        os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True)
        os.makedirs(os.path.dirname(PDF_PATH), exist_ok=True)

        logging.info(f"Using PDF path: {PDF_PATH}")
        logging.info(f"Using Vector DB path: {VECTOR_DB_PATH}")

        if not os.path.exists(PDF_PATH):
            logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
            print(f"\n--- CONFIGURATION ERROR ---")
            print(f"The required PDF file ('{os.path.basename(PDF_PATH)}') was not found at:")
            print(f"  {PDF_PATH}")
            print(f"Please ensure the file exists or set 'PDF_PATH' environment variable.")
            print(f"---------------------------\n")
            exit(1)

        logging.info("Initializing Vector Database...")
        vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
        logging.info("Initializing RAG System...")
        rag = RAGSystem(vector_db=vector_db_instance)

        logging.info(f"Loading/Verifying data from PDF: {PDF_PATH}")
        states_loaded_count = rag.load_pdf(PDF_PATH)
        doc_count = vector_db_instance.document_collection.count() if vector_db_instance.document_collection else 0
        state_count = vector_db_instance.state_collection.count() if vector_db_instance.state_collection else 0
        total_items = doc_count + state_count

        if total_items > 0:
            logging.info(f"Data loading/verification complete. Vector DB contains {total_items} items. Found {states_loaded_count} distinct states.")
        else:
            logging.warning("Potential issue: PDF processed but Vector DB appears empty. Check PDF content/format and logs.")
            print("\nWarning: No data loaded from PDF or found in DB. Application might not function correctly.\n")

        logging.info("Setting up Gradio interface...")
        app_interface = rag.gradio_interface()

        SERVER_PORT = 7860
        logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}")
        print("\n--- Gradio App Running ---")
        print(f"Access the interface in your browser at: http://localhost:{SERVER_PORT} or http://<your-ip-address>:{SERVER_PORT}")
        print("--------------------------\n")
        app_interface.launch(
            server_name="0.0.0.0", server_port=SERVER_PORT,
            share=False,
            # enable_queue=True # Consider for higher traffic
        )

    except FileNotFoundError as fnf_error:
        logging.error(f"Initialization failed due to a missing file: {str(fnf_error)}", exc_info=True)
        print(f"\n--- STARTUP ERROR: File Not Found ---")
        print(f"{str(fnf_error)}")
        print(f"---------------------------------------\n")
        exit(1)
    except ImportError as import_error:
        logging.error(f"Import error: {str(import_error)}. Check dependencies.", exc_info=True)
        print(f"\n--- STARTUP ERROR: Missing Dependency ---")
        print(f"Import Error: {str(import_error)}")
        print(f"Please ensure required libraries are installed (e.g., pip install -r requirements.txt).")
        print(f"-----------------------------------------\n")
        exit(1)
    except RuntimeError as runtime_error:
        logging.error(f"A runtime error occurred during setup: {str(runtime_error)}", exc_info=True)
        print(f"\n--- STARTUP ERROR: Runtime Problem ---")
        print(f"Runtime Error: {str(runtime_error)}")
        print(f"Check logs for details, often related to data loading or DB setup.")
        print(f"--------------------------------------\n")
        exit(1)
    except Exception as e:
        logging.error(f"An unexpected error occurred during application startup: {str(e)}", exc_info=True)
        print(f"\n--- FATAL STARTUP ERROR ---")
        print(f"An unexpected error stopped the application: {str(e)}")
        print(f"Check logs for detailed traceback.")
        print(f"---------------------------\n")
        exit(1)