|
import os |
|
import logging |
|
import re |
|
import time |
|
from typing import Dict, List, Optional |
|
from functools import lru_cache |
|
|
|
import gradio as gr |
|
import gradio.themes as themes |
|
|
|
|
|
try: |
|
|
|
|
|
class VectorDatabase: |
|
def __init__(self, persist_directory: str = "chroma_db"): |
|
self.persist_directory = persist_directory |
|
self.documents = {} |
|
self.states = [] |
|
logging.info(f"VectorDatabase initialized (placeholder) at {persist_directory}") |
|
|
|
def process_and_load_pdf(self, pdf_path: str) -> int: |
|
logging.info(f"Placeholder: Processing and loading PDF '{pdf_path}'...") |
|
|
|
|
|
if not self.documents: |
|
self.documents = { |
|
"doc1": "California Civil Code § 1950.5: Security deposit limit is two months' rent. Must be returned within 21 days.", |
|
"doc2": "New York Real Property Law § 235-b: Implied Warranty of Habitability. Landlord must keep premises fit for human habitation.", |
|
"doc3": "Texas Property Code § 92.056: Landlord's duty to repair or remedy. Tenant must give notice and time to repair.", |
|
"doc4": "Florida Statutes § 83.56: Termination of rental agreement. Requires specific notice periods for rent increases or lease termination.", |
|
"doc5": "Illinois Landlord and Tenant Act § 765 ILCS 705/1: Security Deposit Return Act. Landlord must return deposit within 45 days. ", |
|
"doc6": "Washington RCW 59.18.230: Tenant's right to quiet enjoyment. Landlord may not interfere with tenant's privacy.", |
|
"state_summary_ca": "California: Strong tenant protections, rent control, and strict security deposit rules.", |
|
"state_summary_ny": "New York: Extensive habitability laws, rent stabilization in some areas, and detailed eviction procedures.", |
|
"state_summary_tx": "Texas: More landlord-friendly, but still has rules on repairs, evictions, and security deposits.", |
|
"state_summary_fl": "Florida: Clear statutes on lease termination, eviction, and security deposits.", |
|
"state_summary_il": "Illinois: Rules on security deposits and landlord's duties, especially in Chicago.", |
|
"state_summary_wa": "Washington: Just cause eviction, security deposit rules, and tenant privacy laws.", |
|
} |
|
self.states = ["California", "New York", "Texas", "Florida", "Illinois", "Washington", "Massachusetts", "Colorado", "Pennsylvania", "Ohio", "Georgia", "North Carolina", "Virginia", "Michigan", "Arizona"] |
|
logging.info(f"Placeholder: Simulated loading {len(self.documents)} documents and {len(self.states)} states.") |
|
return len(self.states) |
|
|
|
def query(self, query_text: str, state: str = None, n_results: int = 5) -> Dict[str, any]: |
|
logging.info(f"Placeholder: Querying DB for '{query_text[:50]}...' in state '{state}'") |
|
|
|
doc_matches = [] |
|
for key, content in self.documents.items(): |
|
if state and state.lower() in key.lower() or query_text.lower() in content.lower(): |
|
doc_matches.append(content) |
|
|
|
|
|
documents_retrieved = [] |
|
metadatas_retrieved = [] |
|
for i, doc_content in enumerate(doc_matches): |
|
if len(documents_retrieved) >= n_results: |
|
break |
|
|
|
|
|
match_state = "Unknown" |
|
for s in self.states: |
|
if s.lower() in doc_content.lower(): |
|
match_state = s |
|
break |
|
if match_state == "Unknown" and state: |
|
match_state = state |
|
|
|
documents_retrieved.append(doc_content) |
|
metadatas_retrieved.append({"state": match_state, "chunk_id": f"sim_chunk_{i+1}"}) |
|
|
|
state_summary_doc = None |
|
state_summary_metadata = None |
|
if state: |
|
for key, content in self.documents.items(): |
|
if f"state_summary_{state.lower()}" in key.lower().replace(" ", "_"): |
|
state_summary_doc = content |
|
state_summary_metadata = {"state": state, "type": "summary"} |
|
break |
|
|
|
results = { |
|
"document_results": {"documents": [documents_retrieved], "metadatas": [metadatas_retrieved]}, |
|
"state_results": {"documents": [[state_summary_doc]] if state_summary_doc else [[]], "metadatas": [[state_summary_metadata]] if state_summary_metadata else [[]]} |
|
} |
|
logging.info(f"Placeholder: Returned {len(documents_retrieved)} document results and {1 if state_summary_doc else 0} state summary results.") |
|
return results |
|
|
|
def get_states(self) -> List[str]: |
|
logging.info("Placeholder: Getting states from DB") |
|
|
|
return sorted(list(set(self.states))) |
|
|
|
def document_collection(self): |
|
return type('Collection', (object,), {'count': lambda: len(self.documents)})() |
|
|
|
def state_collection(self): |
|
return type('Collection', (object,), {'count': lambda: len(self.states)})() |
|
|
|
|
|
except ImportError: |
|
logging.error("Error: Could not import VectorDatabase. Using a placeholder for demonstration. Please ensure vector_db.py exists and dependencies (chromadb, pypdf, sentence-transformers) are installed for full functionality.") |
|
|
|
class VectorDatabase: |
|
def __init__(self, persist_directory: str = "chroma_db"): |
|
logging.warning("Using placeholder VectorDatabase. Full functionality requires 'vector_db.py'.") |
|
self.persist_directory = persist_directory |
|
self.documents = {} |
|
self.states = [] |
|
|
|
def process_and_load_pdf(self, pdf_path: str) -> int: |
|
logging.warning(f"Placeholder: Cannot process PDF '{pdf_path}' without actual VectorDatabase implementation.") |
|
self.documents = { |
|
"doc1": "California Civil Code § 1950.5: Security deposit limit is two months' rent. Must be returned within 21 days.", |
|
"doc2": "New York Real Property Law § 235-b: Implied Warranty of Habitability. Landlord must keep premises fit for human habitation.", |
|
"doc3": "Texas Property Code § 92.056: Landlord's duty to repair or remedy. Tenant must give notice and time to repair.", |
|
} |
|
self.states = ["California", "New York", "Texas", "Florida", "Illinois"] |
|
return len(self.states) |
|
|
|
def query(self, query_text: str, state: str = None, n_results: int = 5) -> Dict[str, any]: |
|
logging.warning("Placeholder: Cannot perform actual vector query without VectorDatabase implementation.") |
|
|
|
if state == "California": |
|
return {"answer": f"Simulated response for California: Security deposits are governed by specific statutes like Civil Code § 1950.5.", "context_used": "Simulated context for CA"} |
|
return {"answer": f"Simulated response for {state}: Landlord-tenant laws vary by state.", "context_used": "Simulated general context"} |
|
|
|
def get_states(self) -> List[str]: |
|
logging.warning("Placeholder: Getting states from dummy VectorDatabase.") |
|
return ["California", "New York", "Texas", "Florida", "Illinois"] |
|
|
|
def document_collection(self): |
|
return type('Collection', (object,), {'count': lambda: len(self.documents)})() |
|
|
|
def state_collection(self): |
|
return type('Collection', (object,), {'count': lambda: len(self.states)})() |
|
|
|
|
|
|
|
try: |
|
from langchain_openai import ChatOpenAI |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
except ImportError: |
|
logging.error("Error: langchain-openai or langchain components not found. Please install them: pip install langchain-openai langchain.") |
|
|
|
class ChatOpenAI: |
|
def __init__(self, *args, **kwargs): |
|
logging.warning("Using placeholder ChatOpenAI. Install 'langchain-openai' for actual LLM functionality.") |
|
self.kwargs = kwargs |
|
def invoke(self, messages): |
|
if "fail" in messages.get("query", "").lower(): |
|
raise Exception("Simulated LLM error.") |
|
return {"text": f"Placeholder LLM response for query: '{messages.get('query')}' in state '{messages.get('state')}'. Please install langchain-openai for real AI responses."} |
|
|
|
class PromptTemplate: |
|
def __init__(self, input_variables, template): |
|
self.input_variables = input_variables |
|
self.template = template |
|
logging.warning("Using placeholder PromptTemplate.") |
|
|
|
class LLMChain: |
|
def __init__(self, llm, prompt): |
|
self.llm = llm |
|
self.prompt = prompt |
|
logging.warning("Using placeholder LLMChain.") |
|
def invoke(self, input_data): |
|
|
|
filled_prompt = self.prompt.template.format(**input_data) |
|
logging.info(f"Placeholder: LLMChain invoking with prompt: {filled_prompt[:100]}...") |
|
return self.llm.invoke(input_data) |
|
|
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore", category=SyntaxWarning) |
|
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*") |
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s' |
|
) |
|
|
|
|
|
class RAGSystem: |
|
def __init__(self, vector_db: Optional[VectorDatabase] = None): |
|
logging.info("Initializing RAGSystem") |
|
self.vector_db = vector_db if vector_db else VectorDatabase() |
|
self.llm = None |
|
self.chain = None |
|
self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries. |
|
Instructions: |
|
* Use the context and statutes as the primary basis for your answer when available. |
|
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws. |
|
* Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable. |
|
* If multiple statutes apply, list all relevant ones. |
|
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such. |
|
* Include practical examples or scenarios to enhance clarity and usefulness. |
|
* Use bullet points or numbered lists for readability when appropriate. |
|
* Maintain a professional and neutral tone. |
|
Question: {query} |
|
State: {state} |
|
Statutes from context: |
|
{statutes} |
|
Context information: |
|
--- START CONTEXT --- |
|
{context} |
|
--- END CONCONTEXT --- |
|
Answer:""" |
|
self.prompt_template = PromptTemplate( |
|
input_variables=["query", "context", "state", "statutes"], |
|
template=self.prompt_template_str |
|
) |
|
logging.info("RAGSystem initialized.") |
|
|
|
def extract_statutes(self, text: str) -> str: |
|
statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b' |
|
statutes = re.findall(statute_pattern, text, re.IGNORECASE) |
|
valid_statutes = [] |
|
for statute in statutes: |
|
statute = statute.strip() |
|
if '§' in statute and any(char.isdigit() for char in statute): |
|
if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute: |
|
if len(statute) > 5: |
|
valid_statutes.append(statute) |
|
|
|
if valid_statutes: |
|
seen = set() |
|
unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))] |
|
logging.info(f"Extracted {len(unique_statutes)} unique statutes.") |
|
return "\n".join(f"- {s}" for s in unique_statutes) |
|
|
|
logging.info("No statutes found matching the pattern in the context.") |
|
return "No specific statutes found in the provided context." |
|
|
|
@lru_cache(maxsize=50) |
|
def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]: |
|
logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}") |
|
|
|
if not state or state == "Select a state..." or "Error" in state: |
|
logging.warning("No valid state provided for query.") |
|
return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"} |
|
if not query or not query.strip(): |
|
logging.warning("No query provided.") |
|
return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"} |
|
if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"): |
|
logging.warning("No valid OpenAI API key provided.") |
|
return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"} |
|
|
|
try: |
|
logging.info("Initializing temporary LLM and Chain for this query...") |
|
temp_llm = ChatOpenAI( |
|
temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo", |
|
max_tokens=1500, request_timeout=45 |
|
) |
|
temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template) |
|
logging.info("Temporary LLM and Chain initialized successfully.") |
|
except Exception as e: |
|
logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True) |
|
error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity." |
|
if "authentication" in str(e).lower(): |
|
error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key." |
|
return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"} |
|
|
|
context = "No relevant context found." |
|
statutes_from_context = "Statute retrieval skipped due to context issues." |
|
try: |
|
logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...") |
|
results = self.vector_db.query(query, state=state, n_results=n_results) |
|
logging.info(f"Vector DB query successful for state '{state}'. Processing results...") |
|
|
|
context_parts = [] |
|
doc_results = results.get("document_results", {}) |
|
docs = doc_results.get("documents", [[]])[0] |
|
metadatas = doc_results.get("metadatas", [[]])[0] |
|
if docs and metadatas and len(docs) == len(metadatas): |
|
logging.info(f"Found {len(docs)} document chunks.") |
|
for i, doc_content in enumerate(docs): |
|
metadata = metadatas[i] |
|
state_label = metadata.get('state', 'Unknown State') |
|
chunk_id = metadata.get('chunk_id', 'N/A') |
|
context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}") |
|
|
|
state_results_data = results.get("state_results", {}) |
|
state_docs = state_results_data.get("documents", [[]])[0] |
|
state_metadatas = state_results_data.get("metadatas", [[]])[0] |
|
if state_docs and state_metadatas and len(state_docs) == len(state_metadatas): |
|
logging.info(f"Found {len(state_docs)} state summary documents.") |
|
for i, state_doc_content in enumerate(state_docs): |
|
metadata = state_metadatas[i] |
|
state_label = metadata.get('state', state) |
|
context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}") |
|
|
|
if context_parts: |
|
context = "\n\n---\n\n".join(context_parts) |
|
logging.info(f"Constructed context with {len(context_parts)} parts. Length: {len(context)} chars.") |
|
try: |
|
statutes_from_context = self.extract_statutes(context) |
|
except Exception as e: |
|
logging.error(f"Error extracting statutes: {e}", exc_info=True) |
|
statutes_from_context = "Error extracting statutes from context." |
|
else: |
|
logging.warning("No relevant context parts found from vector DB query.") |
|
context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge." |
|
statutes_from_context = "No specific statutes found as no context was retrieved." |
|
|
|
except Exception as e: |
|
logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True) |
|
context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate." |
|
statutes_from_context = "Statute retrieval skipped due to error retrieving context." |
|
|
|
try: |
|
logging.info("Invoking LLMChain with constructed input...") |
|
llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context} |
|
answer_dict = temp_chain.invoke(llm_input) |
|
answer_text = answer_dict.get('text', '').strip() |
|
|
|
if not answer_text: |
|
logging.warning("LLM returned an empty answer.") |
|
answer_text = "<div class='error-message'><span class='error-icon'>⚠️</span>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>" |
|
else: |
|
logging.info("LLM generated answer successfully.") |
|
|
|
return {"answer": answer_text, "context_used": context} |
|
|
|
except Exception as e: |
|
logging.error(f"LLM processing failed: {str(e)}", exc_info=True) |
|
error_message = "Error: AI answer generation failed." |
|
details = f"Details: {str(e)}" |
|
if "authentication" in str(e).lower(): |
|
error_message = "Error: Authentication failed. Please double-check your OpenAI API key." |
|
details = "" |
|
elif "rate limit" in str(e).lower(): |
|
error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again." |
|
details = "" |
|
elif "context length" in str(e).lower(): |
|
error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context." |
|
details = "Try simplifying your question or asking about a more specific aspect." |
|
elif "timeout" in str(e).lower(): |
|
error_message = "Error: The request to the AI model timed out. The service might be busy." |
|
details = "Please try again in a few moments." |
|
|
|
formatted_error = f"<div class='error-message'><span class='error-icon'>❌</span>{error_message}</div>" |
|
if details: |
|
formatted_error += f"<div class='error-details'>{details}</div>" |
|
|
|
return {"answer": formatted_error, "context_used": context} |
|
|
|
def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]: |
|
return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results) |
|
|
|
def get_states(self) -> List[str]: |
|
try: |
|
states = self.vector_db.get_states() |
|
if not states: |
|
logging.warning("No states retrieved from vector_db. Returning empty list.") |
|
return [] |
|
valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state..."))) |
|
logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.") |
|
return valid_states |
|
except Exception as e: |
|
logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True) |
|
return ["Error: Could not load states"] |
|
|
|
def load_pdf(self, pdf_path: str) -> int: |
|
if not os.path.exists(pdf_path): |
|
logging.error(f"PDF file not found at path: {pdf_path}") |
|
raise FileNotFoundError(f"PDF file not found: {pdf_path}") |
|
try: |
|
logging.info(f"Attempting to load/verify data from PDF: {pdf_path}") |
|
num_states_processed = self.vector_db.process_and_load_pdf(pdf_path) |
|
doc_count = self.vector_db.document_collection.count() |
|
state_count = self.vector_db.state_collection.count() |
|
total_items = doc_count + state_count |
|
|
|
if total_items > 0: |
|
logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.") |
|
current_states = self.get_states() |
|
return len(current_states) if current_states and "Error" not in current_states[0] else 0 |
|
else: |
|
logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.") |
|
return 0 |
|
|
|
except Exception as e: |
|
logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True) |
|
raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e |
|
|
|
|
|
def gradio_interface(self): |
|
def query_interface_wrapper(api_key: str, query: str, state: str) -> str: |
|
|
|
if not api_key or not api_key.strip() or not api_key.startswith("sk-"): |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get one free from OpenAI</a>.</div>" |
|
if not state or state == "Select a state..." or "Error" in state: |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please select a valid state from the dropdown.</div>" |
|
if not query or not query.strip(): |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please enter your question in the text box.</div>" |
|
|
|
|
|
result = self.process_query(query=query, state=state, openai_api_key=api_key) |
|
answer = result.get("answer", "<div class='error-message'><span class='error-icon'>⚠️</span>An unexpected error occurred.</div>") |
|
|
|
|
|
if "<div class='error-message'>" in answer: |
|
return answer |
|
else: |
|
|
|
formatted_response = f"<div class='response-header'><span class='response-icon'>📜</span>Response for {state}</div><hr class='divider'>{answer}" |
|
return formatted_response |
|
|
|
try: |
|
available_states_list = self.get_states() |
|
dropdown_choices = ["Select a state..."] + (available_states_list if available_states_list and "Error" not in available_states_list[0] else ["Error: States unavailable"]) |
|
initial_value = dropdown_choices[0] |
|
except Exception: |
|
dropdown_choices = ["Error: Critical failure loading states"] |
|
initial_value = dropdown_choices[0] |
|
|
|
|
|
example_queries_base = [ |
|
["What are the rules for security deposit returns?", "California"], |
|
["Can a landlord enter my apartment without notice?", "New York"], |
|
["My landlord hasn't made necessary repairs. What can I do?", "Texas"], |
|
["How much notice must a landlord give to raise rent?", "Florida"], |
|
["What is an implied warranty of habitability?", "Illinois"], |
|
["Can a landlord evict a tenant for not paying rent?", "California"], |
|
["What is a fixed-term lease?", "New York"], |
|
["Are emotional support animals allowed?", "Texas"], |
|
["What is a notice to quit?", "Florida"], |
|
["How do I break my lease early?", "Illinois"], |
|
["What are the quiet enjoyment rights?", "Washington"], |
|
] |
|
example_queries = [] |
|
if available_states_list and "Error" not in available_states_list[0] and len(available_states_list) > 0: |
|
loaded_states_set = set(available_states_list) |
|
|
|
example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set] |
|
|
|
if not example_queries: |
|
example_queries.append(["What basic rights do tenants have?", available_states_list[0] if available_states_list else "California"]) |
|
else: |
|
example_queries.append(["What basic rights do tenants have?", "California"]) |
|
|
|
|
|
custom_css = """ |
|
/* Import premium fonts for better readability */ |
|
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Poppins:wght@500;600;700;800&family=JetBrains+Mono:wght@400;500&display=swap'); |
|
|
|
/* Enhanced root variables optimized for Paris theme */ |
|
:root { |
|
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
--secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); |
|
--accent-color: #6366f1; |
|
--accent-hover: #4f46e5; |
|
--text-contrast: #1a202c; |
|
--text-muted: #718096; |
|
--border-strong: #e2e8f0; |
|
--border-subtle: #f1f5f9; |
|
--surface-primary: #ffffff; |
|
--surface-secondary: #f7fafc; |
|
--surface-accent: #edf2f7; |
|
--shadow-soft: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); |
|
--shadow-medium: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05); |
|
--shadow-strong: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04); |
|
--border-radius-sm: 8px; |
|
--border-radius-md: 12px; |
|
--border-radius-lg: 16px; |
|
--spacing-xs: 0.5rem; |
|
--spacing-sm: 0.75rem; |
|
--spacing-md: 1rem; |
|
--spacing-lg: 1.5rem; |
|
--spacing-xl: 2rem; |
|
} |
|
|
|
/* Dark mode enhancements for Paris theme */ |
|
@media (prefers-color-scheme: dark) { |
|
:root { |
|
--surface-primary: #1a202c; |
|
--surface-secondary: #2d3748; |
|
--surface-accent: #4a5568; |
|
--text-contrast: #f7fafc; |
|
--text-muted: #a0aec0; |
|
--border-strong: #4a5568; |
|
--border-subtle: #2d3748; |
|
} |
|
} |
|
|
|
/* Enhanced base container for Paris theme */ |
|
.gradio-container { |
|
max-width: 1100px !important; |
|
margin: 0 auto !important; |
|
padding: var(--spacing-md) !important; |
|
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important; |
|
background: var(--surface-secondary) !important; |
|
min-height: 100vh !important; |
|
} |
|
|
|
/* Stunning header with Paris theme integration */ |
|
.app-header-wrapper { |
|
background: var(--primary-gradient) !important; |
|
border: 3px solid transparent !important; |
|
background-clip: padding-box !important; |
|
border-radius: var(--border-radius-lg) !important; |
|
padding: var(--spacing-xl) !important; |
|
margin-bottom: var(--spacing-lg) !important; |
|
text-align: center !important; |
|
box-shadow: var(--shadow-strong) !important; |
|
position: relative !important; |
|
overflow: hidden !important; |
|
} |
|
|
|
.app-header-wrapper::before { |
|
content: ''; |
|
position: absolute; |
|
top: 0; |
|
left: 0; |
|
right: 0; |
|
bottom: 0; |
|
background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0.05) 100%); |
|
pointer-events: none; |
|
} |
|
|
|
.app-header-logo { |
|
font-size: 3.5rem !important; |
|
margin-bottom: var(--spacing-sm) !important; |
|
display: block !important; |
|
filter: drop-shadow(0 4px 8px rgba(0,0,0,0.3)) !important; |
|
animation: float 3s ease-in-out infinite !important; |
|
} |
|
|
|
@keyframes float { |
|
0%, 100% { transform: translateY(0px); } |
|
50% { transform: translateY(-10px); } |
|
} |
|
|
|
.app-header-title { |
|
font-family: 'Poppins', sans-serif !important; |
|
font-size: 2.75rem !important; |
|
font-weight: 800 !important; |
|
color: white !important; |
|
margin: 0 0 var(--spacing-sm) 0 !important; |
|
line-height: 1.1 !important; |
|
text-shadow: 0 4px 8px rgba(0,0,0,0.3) !important; |
|
letter-spacing: -0.02em !important; |
|
} |
|
|
|
.app-header-tagline { |
|
font-size: 1.2rem !important; |
|
color: rgba(255,255,255,0.9) !important; |
|
font-weight: 400 !important; |
|
margin: 0 !important; |
|
text-shadow: 0 2px 4px rgba(0,0,0,0.2) !important; |
|
} |
|
|
|
/* Compact and elegant main container */ |
|
.main-dashboard-container { |
|
display: flex !important; |
|
flex-direction: column !important; |
|
gap: var(--spacing-md) !important; |
|
} |
|
|
|
/* Premium card design with superior boundaries */ |
|
.dashboard-card-section { |
|
background: var(--surface-primary) !important; |
|
border: 2px solid var(--border-strong) !important; |
|
border-radius: var(--border-radius-md) !important; |
|
padding: var(--spacing-lg) !important; |
|
box-shadow: var(--shadow-soft) !important; |
|
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; |
|
position: relative !important; |
|
overflow: hidden !important; |
|
} |
|
|
|
.dashboard-card-section::before { |
|
content: ''; |
|
position: absolute; |
|
top: 0; |
|
left: 0; |
|
width: 100%; |
|
height: 3px; |
|
background: var(--secondary-gradient); |
|
transform: translateX(-100%); |
|
transition: transform 0.3s ease; |
|
} |
|
|
|
.dashboard-card-section:hover { |
|
box-shadow: var(--shadow-medium) !important; |
|
transform: translateY(-2px) !important; |
|
border-color: var(--accent-color) !important; |
|
} |
|
|
|
.dashboard-card-section:hover::before { |
|
transform: translateX(0); |
|
} |
|
|
|
/* Perfectly centered and styled section titles */ |
|
.sub-section-title { |
|
font-family: 'Poppins', sans-serif !important; |
|
font-size: 1.6rem !important; |
|
font-weight: 700 !important; |
|
color: var(--text-contrast) !important; |
|
text-align: center !important; |
|
margin: 0 0 var(--spacing-lg) 0 !important; |
|
padding-bottom: var(--spacing-sm) !important; |
|
border-bottom: 3px solid transparent !important; |
|
background: var(--primary-gradient) !important; |
|
background-clip: text !important; |
|
-webkit-background-clip: text !important; |
|
-webkit-text-fill-color: transparent !important; |
|
position: relative !important; |
|
display: block !important; |
|
} |
|
|
|
.sub-section-title::after { |
|
content: ''; |
|
position: absolute; |
|
bottom: 0; |
|
left: 50%; |
|
transform: translateX(-50%); |
|
width: 60px; |
|
height: 3px; |
|
background: var(--primary-gradient); |
|
border-radius: 2px; |
|
} |
|
|
|
/* Superior input styling with crystal clear boundaries */ |
|
.gradio-textbox, .gradio-dropdown { |
|
margin-bottom: var(--spacing-sm) !important; |
|
} |
|
|
|
.gradio-textbox textarea, |
|
.gradio-textbox input, |
|
.gradio-dropdown select { |
|
background: var(--surface-primary) !important; |
|
border: 2px solid var(--border-strong) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
padding: var(--spacing-md) !important; |
|
font-size: 0.95rem !important; |
|
font-family: 'Inter', sans-serif !important; |
|
color: var(--text-contrast) !important; |
|
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; |
|
box-shadow: inset 0 1px 3px rgba(0,0,0,0.1) !important; |
|
line-height: 1.5 !important; |
|
} |
|
|
|
.gradio-textbox textarea:focus, |
|
.gradio-textbox input:focus, |
|
.gradio-dropdown select:focus { |
|
outline: none !important; |
|
border-color: var(--accent-color) !important; |
|
box-shadow: 0 0 0 4px rgba(99, 102, 241, 0.1), inset 0 1px 3px rgba(0,0,0,0.1) !important; |
|
transform: translateY(-1px) !important; |
|
} |
|
|
|
.gradio-textbox textarea:hover, |
|
.gradio-textbox input:hover, |
|
.gradio-dropdown select:hover { |
|
border-color: var(--accent-color) !important; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1), inset 0 1px 3px rgba(0,0,0,0.1) !important; |
|
} |
|
|
|
/* Enhanced placeholder and label styling */ |
|
.gradio-textbox textarea::placeholder, |
|
.gradio-textbox input::placeholder { |
|
color: var(--text-muted) !important; |
|
opacity: 0.8 !important; |
|
font-style: italic !important; |
|
} |
|
|
|
.gradio-textbox label, |
|
.gradio-dropdown label { |
|
font-weight: 600 !important; |
|
color: var(--text-contrast) !important; |
|
font-size: 0.9rem !important; |
|
margin-bottom: var(--spacing-xs) !important; |
|
display: block !important; |
|
text-transform: uppercase !important; |
|
letter-spacing: 0.5px !important; |
|
} |
|
|
|
/* Refined info text */ |
|
.gradio-textbox .gr-form, |
|
.gradio-dropdown .gr-form { |
|
font-size: 0.85rem !important; |
|
color: var(--text-muted) !important; |
|
margin-top: var(--spacing-xs) !important; |
|
font-style: italic !important; |
|
} |
|
|
|
/* Optimized input layout */ |
|
.input-row { |
|
display: flex !important; |
|
gap: var(--spacing-md) !important; |
|
margin-bottom: var(--spacing-sm) !important; |
|
align-items: flex-end !important; |
|
} |
|
|
|
.input-field { |
|
flex: 1 !important; |
|
min-width: 0 !important; |
|
} |
|
|
|
/* Premium button design */ |
|
.button-row { |
|
display: flex !important; |
|
gap: var(--spacing-md) !important; |
|
justify-content: flex-end !important; |
|
margin-top: var(--spacing-lg) !important; |
|
flex-wrap: wrap !important; |
|
} |
|
|
|
.gradio-button { |
|
padding: var(--spacing-md) var(--spacing-xl) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
font-weight: 600 !important; |
|
font-size: 0.9rem !important; |
|
text-transform: uppercase !important; |
|
letter-spacing: 0.5px !important; |
|
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; |
|
cursor: pointer !important; |
|
border: 2px solid transparent !important; |
|
position: relative !important; |
|
overflow: hidden !important; |
|
} |
|
|
|
.gradio-button::before { |
|
content: ''; |
|
position: absolute; |
|
top: 0; |
|
left: -100%; |
|
width: 100%; |
|
height: 100%; |
|
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.2), transparent); |
|
transition: left 0.5s; |
|
} |
|
|
|
.gradio-button:hover::before { |
|
left: 100%; |
|
} |
|
|
|
.gr-button-primary { |
|
background: var(--primary-gradient) !important; |
|
color: white !important; |
|
box-shadow: var(--shadow-soft) !important; |
|
border: 2px solid transparent !important; |
|
} |
|
|
|
.gr-button-primary:hover { |
|
box_shadow: var(--shadow-medium) !important; |
|
transform: translateY(-2px) scale(1.02) !important; |
|
} |
|
|
|
.gr-button-primary:active { |
|
transform: translateY(0) scale(0.98) !important; |
|
} |
|
|
|
.gr-button-secondary { |
|
background: transparent !important; |
|
color: var(--text-contrast) !important; |
|
border: 2px solid var(--border-strong) !important; |
|
backdrop-filter: blur(10px) !important; |
|
} |
|
|
|
.gr-button-secondary:hover { |
|
background: var(--surface-accent) !important; |
|
border-color: var(--accent-color) !important; |
|
transform: translateY(-1px) !important; |
|
box_shadow: var(--shadow-soft) !important; |
|
} |
|
|
|
/* Exceptional output styling */ |
|
.output-content-wrapper { |
|
background: var(--surface-primary) !important; |
|
border: 2px solid var(--border-strong) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
padding: var(--spacing-lg) !important; |
|
min-height: 120px !important; |
|
font-size: 0.95rem !important; |
|
line-height: 1.6 !important; |
|
color: var(--text-contrast) !important; |
|
box-shadow: inset 0 2px 4px rgba(0,0,0,0.05) !important; |
|
font-family: 'Inter', sans-serif !important; |
|
} |
|
|
|
.response-header { |
|
font-size: 1.3rem !important; |
|
font-weight: 700 !important; |
|
color: var(--text-contrast) !important; |
|
margin-bottom: var(--spacing-md) !important; |
|
display: flex !important; |
|
align-items: center !important; |
|
gap: var(--spacing-sm) !important; |
|
background: var(--primary-gradient) !important; |
|
background-clip: text !important; |
|
-webkit-background-clip: text !important; |
|
-webkit-text-fill-color: transparent !important; |
|
} |
|
|
|
.response-icon { |
|
font-size: 1.4rem !important; |
|
background: var(--primary-gradient) !important; |
|
background-clip: text !important; |
|
-webkit-background-clip: text !important; |
|
-webkit-text-fill-color: transparent !important; |
|
} |
|
|
|
.divider { |
|
border: none !important; |
|
border-top: 2px solid var(--border-strong) !important; |
|
margin: var(--spacing-md) 0 !important; |
|
background: var(--primary-gradient) !important; |
|
height: 2px !important; |
|
border: none !important; |
|
border-radius: 1px !important; |
|
} |
|
|
|
/* Enhanced error styling */ |
|
.error-message { |
|
background: linear-gradient(135deg, #fef2f2 0%, #fde8e8 100%) !important; |
|
border: 2px solid #fecaca !important; |
|
color: #dc2626 !important; |
|
padding: var(--spacing-lg) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
display: flex !important; |
|
align-items: flex-start !important; |
|
gap: var(--spacing-md) !important; |
|
font-size: 0.9rem !important; |
|
box_shadow: var(--shadow-soft) !important; |
|
} |
|
|
|
.error-icon { |
|
font-size: 1.3rem !important; |
|
line-height: 1 !important; |
|
margin-top: 0.1rem !important; |
|
animation: pulse 2s infinite !important; |
|
} |
|
|
|
@keyframes pulse { |
|
0%, 100% { opacity: 1; } |
|
50% { opacity: 0.7; } |
|
} |
|
|
|
/* Elegant placeholder */ |
|
.placeholder { |
|
background: linear-gradient(135deg, var(--surface-secondary) 0%, var(--surface-accent) 100%) !important; |
|
border: 2px dashed var(--border-strong) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
padding: var(--spacing-xl) var(--spacing-lg) !important; |
|
text-align: center !important; |
|
color: var(--text-muted) !important; |
|
font-style: italic !important; |
|
font-size: 1rem !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
|
|
.placeholder:hover { |
|
border-color: var(--accent-color) !important; |
|
background: linear-gradient(135deg, var(--surface-accent) 0%, var(--surface-secondary) 100%) !important; |
|
} |
|
|
|
/* Premium examples table */ |
|
.examples-section .gr-samples-table { |
|
border: 2px solid var(--border-strong) !important; |
|
border-radius: var(--border-radius-sm) !important; |
|
overflow: hidden !important; |
|
margin-top: var(--spacing-lg) !important; |
|
box_shadow: var(--shadow-soft) !important; |
|
} |
|
|
|
.examples-section .gr-samples-table th, |
|
.examples-section .gr-samples-table td { |
|
padding: var(--spacing-md) !important; |
|
border: none !important; |
|
font-size: 0.9rem !important; |
|
transition: all 0.2s ease !important; |
|
} |
|
|
|
.examples-section .gr-samples-table th { |
|
background: var(--primary-gradient) !important; |
|
color: white !important; |
|
font-weight: 600 !important; |
|
text-transform: uppercase !important; |
|
letter-spacing: 0.5px !important; |
|
font-size: 0.8rem !important; |
|
} |
|
|
|
.examples-section .gr-samples-table td { |
|
background: var(--surface-primary) !important; |
|
color: var(--text-contrast) !important; |
|
border-top: 1px solid var(--border-subtle) !important; |
|
cursor: pointer !important; |
|
} |
|
|
|
.examples-section .gr-samples-table tr:hover td { |
|
background: var(--surface-accent) !important; |
|
transform: scale(1.01) !important; |
|
} |
|
|
|
/* Sophisticated footer */ |
|
.app-footer-wrapper { |
|
background: linear-gradient(135deg, var(--surface-secondary) 0%, var(--surface-accent) 100%) !important; |
|
border: 2px solid var(--border-strong) !important; |
|
border-radius: var(--border-radius-md) !important; |
|
padding: var(--spacing-lg) !important; |
|
margin-top: var(--spacing-lg) !important; |
|
text-align: center !important; |
|
box_shadow: var(--shadow-soft) !important; |
|
} |
|
|
|
.app-footer p { |
|
margin: var(--spacing-sm) 0 !important; |
|
font-size: 0.9rem !important; |
|
color: var(--text-muted) !important; |
|
line-height: 1.6 !important; |
|
} |
|
|
|
.app-footer a { |
|
background: var(--primary-gradient) !important; |
|
background-clip: text !important; |
|
-webkit-background-clip: text !important; |
|
-webkit-text-fill-color: transparent !important; |
|
text-decoration: none !important; |
|
font-weight: 600 !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
|
|
.app-footer a:hover { |
|
text-decoration: underline !important; |
|
transform: scale(1.05) !important; |
|
display: inline-block !important; |
|
} |
|
|
|
/* Hide Gradio default elements */ |
|
.gr-examples .gr-label, |
|
.gr-examples .label-wrap, |
|
.gr-examples .gr-accordion-header { |
|
display: none !important; |
|
} |
|
|
|
/* Responsive design */ |
|
@media (max-width: 768px) { |
|
.gradio-container { |
|
padding: var(--spacing-sm) !important; |
|
} |
|
|
|
.app-header-title { |
|
font-size: 2rem !important; |
|
} |
|
|
|
.app-header-tagline { |
|
font-size: 1rem !important; |
|
} |
|
|
|
.input-row { |
|
flex-direction: column !important; |
|
} |
|
|
|
.button-row { |
|
flex-direction: column !important; |
|
} |
|
|
|
.gradio-button { |
|
width: 100% !important; |
|
} |
|
} |
|
""" |
|
|
|
with gr.Blocks(theme="earneleh/paris", css=custom_css, title="Landlord-Tenant Rights Assistant") as demo: |
|
|
|
with gr.Group(elem_classes="app-header-wrapper"): |
|
gr.Markdown( |
|
""" |
|
<div class="app-header"> |
|
<span class="app-header-logo">⚖️</span> |
|
<h1 class="app-header-title">Landlord-Tenant Rights Assistant</h1> |
|
<p class="app-header-tagline">Empowering You with State-Specific Legal Insights</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
with gr.Column(elem_classes="main-dashboard-container"): |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='sub-section-title'>Welcome & Disclaimer</h3>") |
|
gr.Markdown( |
|
""" |
|
Navigate landlord-tenant laws with ease. This assistant provides detailed, state-specific answers grounded in legal authority. |
|
|
|
**Disclaimer:** This tool is for informational purposes only and does not constitute legal advice. For specific legal guidance, always consult a licensed attorney in your jurisdiction. |
|
""" |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='sub-section-title'>OpenAI API Key</h3>") |
|
api_key_input = gr.Textbox( |
|
label="API Key", |
|
type="password", |
|
placeholder="Enter your API key (e.g., sk-...)", |
|
info="Required to process your query. Get one free from OpenAI.", |
|
lines=1, |
|
elem_classes=["input-field-group"] |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='sub-section-title'>Ask Your Question</h3>") |
|
with gr.Row(elem_classes="input-row"): |
|
with gr.Column(elem_classes="input-field", scale=3): |
|
query_input = gr.Textbox( |
|
label="Your Question", |
|
placeholder="E.g., What are the rules for security deposit returns in my state?", |
|
lines=4, |
|
max_lines=8, |
|
elem_classes=["input-field-group"] |
|
) |
|
with gr.Column(elem_classes="input-field", scale=1): |
|
state_input = gr.Dropdown( |
|
label="Select State", |
|
choices=dropdown_choices, |
|
value=initial_value, |
|
allow_custom_value=False, |
|
elem_classes=["input-field-group"] |
|
) |
|
with gr.Row(elem_classes="button-row"): |
|
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["gr-button-secondary"]) |
|
submit_button = gr.Button("Submit Query", variant="primary", elem_classes=["gr-button-primary"]) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='sub-section-title'>Legal Assistant's Response</h3>") |
|
output = gr.Markdown( |
|
value="<div class='placeholder'>The answer will appear here after submitting your query.</div>", |
|
elem_classes="output-content-wrapper" |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section examples-section"): |
|
gr.Markdown("<h3 class='sub-section-title'>Example Questions</h3>") |
|
if example_queries: |
|
gr.Examples( |
|
examples=example_queries, |
|
inputs=[query_input, state_input], |
|
examples_per_page=5, |
|
label="" |
|
) |
|
else: |
|
gr.Markdown("<div class='placeholder'>Sample questions could not be loaded.</div>") |
|
|
|
|
|
with gr.Group(elem_classes="app-footer-wrapper"): |
|
gr.Markdown( |
|
""" |
|
This tool is for informational purposes only and does not constitute legal advice. For legal guidance, always consult with a licensed attorney in your jurisdiction. |
|
|
|
Developed by **Nischal Subedi**. Connect on [LinkedIn](https://www.linkedin.com/in/nischal1/) or explore insights at [Substack](https://datascientistinsights.substack.com/). |
|
""" |
|
) |
|
|
|
|
|
submit_button.click( |
|
fn=query_interface_wrapper, |
|
inputs=[api_key_input, query_input, state_input], |
|
outputs=output, |
|
api_name="submit_query" |
|
) |
|
|
|
clear_button.click( |
|
fn=lambda: ( |
|
"", |
|
"", |
|
initial_value, |
|
"<div class='placeholder'>Inputs cleared. Ready for your next question.</div>" |
|
), |
|
inputs=[], |
|
outputs=[api_key_input, query_input, state_input, output] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.info("Starting Landlord-Tenant Rights Bot application...") |
|
try: |
|
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf") |
|
DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db") |
|
|
|
|
|
PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH) |
|
VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH) |
|
|
|
|
|
os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True) |
|
|
|
logging.info(f"Attempting to load PDF from: {PDF_PATH}") |
|
if not os.path.exists(PDF_PATH): |
|
logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}") |
|
print(f"\n--- CONFIGURATION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') not found at: {PDF_PATH}.\nPlease ensure it exists or set 'PDF_PATH' environment variable.\n---------------------------\n") |
|
exit(1) |
|
|
|
if not os.access(PDF_PATH, os.R_OK): |
|
logging.error(f"FATAL: PDF file at '{PDF_PATH}' exists but is not readable. Check file permissions.") |
|
print(f"\n--- PERMISSION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') found but not readable at: {PDF_PATH}\nPlease check file permissions (e.g., using 'chmod +r' in terminal).\n---------------------------\n") |
|
exit(1) |
|
|
|
logging.info(f"PDF file '{os.path.basename(PDF_PATH)}' found and is readable.") |
|
|
|
|
|
vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH) |
|
rag = RAGSystem(vector_db=vector_db_instance) |
|
|
|
|
|
rag.load_pdf(PDF_PATH) |
|
|
|
|
|
app_interface = rag.gradio_interface() |
|
|
|
|
|
SERVER_PORT = int(os.getenv("PORT", 7860)) |
|
|
|
logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}") |
|
print(f"\n--- Gradio App Running ---\nAccess at: http://localhost:{SERVER_PORT} or your public Spaces URL\n--------------------------\n") |
|
|
|
|
|
app_interface.launch(server_name="0.0.0.0", server_port=SERVER_PORT, share=False) |
|
|
|
except ModuleNotFoundError as e: |
|
if "vector_db" in str(e): |
|
logging.error(f"FATAL: Could not import VectorDatabase. Ensure 'vector_db.py' is in the same directory and 'chromadb', 'langchain', 'pypdf', 'sentence-transformers' are installed.", exc_info=True) |
|
print(f"\n--- MISSING DEPENDENCY OR FILE ---\nCould not find/import 'vector_db.py' or one of its dependencies.\nError: {e}\nPlease ensure 'vector_db.py' is present and all required packages (chromadb, langchain, pypdf, sentence-transformers, etc.) are in your requirements.txt and installed.\n---------------------------\n") |
|
else: |
|
logging.error(f"Application startup failed due to a missing module: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR - MISSING MODULE ---\n{str(e)}\nPlease ensure all dependencies are installed.\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |
|
except FileNotFoundError as e: |
|
logging.error(f"Application startup failed due to a missing file: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR - FILE NOT FOUND ---\n{str(e)}\nPlease ensure the file exists at the specified path.\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |
|
except Exception as e: |
|
logging.error(f"Application startup failed: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR ---\n{str(e)}\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |