Spaces:
Running
Running
import random | |
import torch | |
from pathlib import Path | |
from torch.utils import data as data | |
from basicsr.data.transforms import augment, paired_random_crop | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class Vimeo90KDataset(data.Dataset): | |
"""Vimeo90K dataset for training. | |
The keys are generated from a meta info txt file. | |
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt | |
Each line contains: | |
1. clip name; 2. frame number; 3. image shape, separated by a white space. | |
Examples: | |
00001/0001 7 (256,448,3) | |
00001/0002 7 (256,448,3) | |
Key examples: "00001/0001" | |
GT (gt): Ground-Truth; | |
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. | |
The neighboring frame list for different num_frame: | |
num_frame | frame list | |
1 | 4 | |
3 | 3,4,5 | |
5 | 2,3,4,5,6 | |
7 | 1,2,3,4,5,6,7 | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
num_frame (int): Window size for input frames. | |
gt_size (int): Cropped patched size for gt patches. | |
random_reverse (bool): Random reverse input frames. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h | |
and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
""" | |
def __init__(self, opt): | |
super(Vimeo90KDataset, self).__init__() | |
self.opt = opt | |
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) | |
with open(opt['meta_info_file'], 'r') as fin: | |
self.keys = [line.split(' ')[0] for line in fin] | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.is_lmdb = False | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.is_lmdb = True | |
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt'] | |
# indices of input images | |
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])] | |
# temporal augmentation configs | |
self.random_reverse = opt['random_reverse'] | |
logger = get_root_logger() | |
logger.info(f'Random reverse is {self.random_reverse}.') | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# random reverse | |
if self.random_reverse and random.random() < 0.5: | |
self.neighbor_list.reverse() | |
scale = self.opt['scale'] | |
gt_size = self.opt['gt_size'] | |
key = self.keys[index] | |
clip, seq = key.split('/') # key example: 00001/0001 | |
# get the GT frame (im4.png) | |
if self.is_lmdb: | |
img_gt_path = f'{key}/im4' | |
else: | |
img_gt_path = self.gt_root / clip / seq / 'im4.png' | |
img_bytes = self.file_client.get(img_gt_path, 'gt') | |
img_gt = imfrombytes(img_bytes, float32=True) | |
# get the neighboring LQ frames | |
img_lqs = [] | |
for neighbor in self.neighbor_list: | |
if self.is_lmdb: | |
img_lq_path = f'{clip}/{seq}/im{neighbor}' | |
else: | |
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png' | |
img_bytes = self.file_client.get(img_lq_path, 'lq') | |
img_lq = imfrombytes(img_bytes, float32=True) | |
img_lqs.append(img_lq) | |
# randomly crop | |
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path) | |
# augmentation - flip, rotate | |
img_lqs.append(img_gt) | |
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) | |
img_results = img2tensor(img_results) | |
img_lqs = torch.stack(img_results[0:-1], dim=0) | |
img_gt = img_results[-1] | |
# img_lqs: (t, c, h, w) | |
# img_gt: (c, h, w) | |
# key: str | |
return {'lq': img_lqs, 'gt': img_gt, 'key': key} | |
def __len__(self): | |
return len(self.keys) | |
class Vimeo90KRecurrentDataset(Vimeo90KDataset): | |
def __init__(self, opt): | |
super(Vimeo90KRecurrentDataset, self).__init__(opt) | |
self.flip_sequence = opt['flip_sequence'] | |
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# random reverse | |
if self.random_reverse and random.random() < 0.5: | |
self.neighbor_list.reverse() | |
scale = self.opt['scale'] | |
gt_size = self.opt['gt_size'] | |
key = self.keys[index] | |
clip, seq = key.split('/') # key example: 00001/0001 | |
# get the neighboring LQ and GT frames | |
img_lqs = [] | |
img_gts = [] | |
for neighbor in self.neighbor_list: | |
if self.is_lmdb: | |
img_lq_path = f'{clip}/{seq}/im{neighbor}' | |
img_gt_path = f'{clip}/{seq}/im{neighbor}' | |
else: | |
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png' | |
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png' | |
# LQ | |
img_bytes = self.file_client.get(img_lq_path, 'lq') | |
img_lq = imfrombytes(img_bytes, float32=True) | |
# GT | |
img_bytes = self.file_client.get(img_gt_path, 'gt') | |
img_gt = imfrombytes(img_bytes, float32=True) | |
img_lqs.append(img_lq) | |
img_gts.append(img_gt) | |
# randomly crop | |
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path) | |
# augmentation - flip, rotate | |
img_lqs.extend(img_gts) | |
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) | |
img_results = img2tensor(img_results) | |
img_lqs = torch.stack(img_results[:7], dim=0) | |
img_gts = torch.stack(img_results[7:], dim=0) | |
if self.flip_sequence: # flip the sequence: 7 frames to 14 frames | |
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0) | |
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0) | |
# img_lqs: (t, c, h, w) | |
# img_gt: (c, h, w) | |
# key: str | |
return {'lq': img_lqs, 'gt': img_gts, 'key': key} | |
def __len__(self): | |
return len(self.keys) | |