mainmainmina / inference.py
Uniaff's picture
Update inference.py
054b210 verified
import os
import argparse
import subprocess
import platform
import numpy as np
import cv2
import torch
from tqdm import tqdm
from face_detection import FaceAlignment, LandmarksType
from wav2lip_models import Wav2Lip
from face_parsing import init_parser, swap_regions
from esrgan.upsample import upscale, load_sr
from basicsr.utils.download_util import load_file_from_url
import audio
def parse_arguments():
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--checkpoint_path', type=str, default="checkpoints/wav2lip_gan.pth",
help='Name of saved checkpoint to load weights from', required=False)
parser.add_argument('--segmentation_path', type=str, default="checkpoints/face_segmentation.pth",
help='Name of saved checkpoint of segmentation network', required=False)
parser.add_argument('--sr_path', type=str, default='weights/4x_BigFace_v3_Clear.pth',
help='Name of saved checkpoint of super-resolution network', required=False)
parser.add_argument('--face', type=str,
help='Filepath of video/image that contains faces to use', required=True)
parser.add_argument('--audio', type=str,
help='Filepath of video/audio file to use as raw audio source', required=True)
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
default='results/result_voice.mp4')
parser.add_argument('--static', action='store_true',
help='If set, use only first video frame for inference')
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
default=25., required=False)
parser.add_argument('--pads', nargs=4, type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=32)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=256)
parser.add_argument('--resize_factor', default=1, type=int,
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
parser.add_argument('--crop', nargs=4, type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs=4, type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--rotate', action='store_true',
help='Sometimes videos taken from a phone can be flipped 90deg. If set, will flip video right by 90deg.'
'Use if you get a flipped result, despite feeding a normal looking video')
parser.add_argument('--nosmooth', action='store_true',
help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--no_seg', action='store_true',
help='Prevent using face segmentation')
parser.add_argument('--no_sr', action='store_true',
help='Prevent using super resolution')
parser.add_argument('--enhance_face', choices=['gfpgan','codeformer'],
help='Use GFP-GAN or CodeFormer to enhance facial details.')
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.75,
help='Balance the quality and fidelity. Default: 0.75')
parser.add_argument('--save_frames', action='store_true',
help='Save each frame as an image. Use with caution')
parser.add_argument('--gt_path', type=str,
help='Where to store saved ground truth frames', required=False)
parser.add_argument('--pred_path', type=str,
help='Where to store frames produced by algorithm', required=False)
parser.add_argument('--save_as_video', action="store_true", default=False,
help='Whether to save frames as video', required=False)
parser.add_argument('--image_prefix', type=str, default="",
help='Prefix to save frames with', required=False)
args = parser.parse_args()
if os.path.isfile(args.face) and os.path.splitext(args.face)[1].lower() in ['.jpg', '.png', '.jpeg']:
args.static = True
args.img_size = 96
return args
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
window = boxes[max(i - T + 1, 0):i + 1]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(detector, images, args):
predictions = []
batch_size = args.face_det_batch_size
try:
for i in range(0, len(images), batch_size):
batch_images = np.array(images[i:i + batch_size])
predictions.extend(detector.get_detections_for_batch(batch_images))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print(f'Recovering from OOM error; New batch size: {batch_size}')
return face_detect(detector, images, args)
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
continue
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not args.nosmooth and len(boxes) > 0:
boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)]
for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def datagen(mels, reader, detector, args):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for m in mels:
frame_to_save = next(reader, None)
if frame_to_save is None:
reader = read_frames(args.face, args.resize_factor, args.rotate, args.crop)
frame_to_save = next(reader, None)
if frame_to_save is None:
break
face_detect_result = face_detect(detector, [frame_to_save], args)
if len(face_detect_result) > 0: # Check if face detection was successful
face, coords = face_detect_result[0]
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch_np = np.asarray(img_batch)
mel_batch_np = np.asarray(mel_batch)
img_masked = img_batch_np.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch_np = np.concatenate((img_masked, img_batch_np), axis=3) / 255.0
mel_batch_np = mel_batch_np.reshape(len(mel_batch_np), mel_batch_np.shape[1], mel_batch_np.shape[2], 1)
yield img_batch_np, mel_batch_np, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch_np = np.asarray(img_batch)
mel_batch_np = np.asarray(mel_batch)
img_masked = img_batch_np.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch_np = np.concatenate((img_masked, img_batch_np), axis=3) / 255.0
mel_batch_np = mel_batch_np.reshape(len(mel_batch_np), mel_batch_np.shape[1], mel_batch_np.shape[2], 1)
yield img_batch_np, mel_batch_np, frame_batch, coords_batch
def load_checkpoint(checkpoint_path, device):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
return checkpoint
def load_model(checkpoint_path, device):
model = Wav2Lip()
print(f"Loading checkpoint from: {checkpoint_path}")
checkpoint = load_checkpoint(checkpoint_path, device)
state_dict = checkpoint["state_dict"]
new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict)
model = model.to(device)
model.eval()
return model
def read_frames(face_path, resize_factor, rotate, crop):
if os.path.splitext(face_path)[1].lower() in ['.jpg', '.png', '.jpeg']:
face = cv2.imread(face_path)
if resize_factor > 1:
face = cv2.resize(face, (face.shape[1]//resize_factor, face.shape[0]//resize_factor))
if rotate:
face = cv2.rotate(face, cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = face.shape[1]
if y2 == -1: y2 = face.shape[0]
face = face[y1:y2, x1:x2]
while True:
yield face
else:
video_stream = cv2.VideoCapture(face_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames from start...')
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
if rotate:
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
yield frame
def main():
args = parse_arguments()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} for inference.')
# Инициализация моделей вне циклов
detector = FaceAlignment(LandmarksType._2D, flip_input=False, device=device)
if not args.no_seg:
print("Loading segmentation network...")
seg_net = init_parser(args.segmentation_path)
else:
seg_net = None
if not args.no_sr:
print("Loading super resolution model...")
run_params = load_sr(args.sr_path, device, args.enhance_face)
else:
run_params = None
model = load_model(args.checkpoint_path, device)
print("Model loaded")
if not os.path.isfile(args.face):
raise ValueError('--face argument must be a valid path to video/image file')
if not args.audio.endswith('.wav'):
print('Extracting raw audio...')
temp_wav = os.path.join(os.path.dirname(args.outfile), 'temp.wav')
command = f'ffmpeg -y -i "{args.audio}" -strict -2 "{temp_wav}"'
subprocess.call(command, shell=True)
args.audio = temp_wav
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel).any():
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size = 16
fps = args.fps if args.static else None
if not args.static:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
video_stream.release()
mel_idx_multiplier = 80.0 / fps
mel_chunks = []
i = 0
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > mel.shape[1]:
mel_chunks.append(mel[:, -mel_step_size:])
break
mel_chunks.append(mel[:, start_idx:start_idx + mel_step_size])
i += 1
print(f"Length of mel chunks: {len(mel_chunks)}")
reader = read_frames(args.face, args.resize_factor, args.rotate, args.crop)
generator = datagen(mel_chunks, reader, detector, args)
if args.save_as_video:
frame_sample = next(reader)
frame_h, frame_w = frame_sample.shape[:2]
# Определяем путь для result.avi в той же директории, что и outfile
result_avi = os.path.join(os.path.dirname(args.outfile), "result.avi")
out = cv2.VideoWriter(result_avi,
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
if args.save_frames:
gt_out = cv2.VideoWriter(os.path.join(os.path.dirname(args.outfile), "gt.avi"), cv2.VideoWriter_fourcc(*'DIVX'), fps, (384, 384))
pred_out = cv2.VideoWriter(os.path.join(os.path.dirname(args.outfile), "pred.avi"), cv2.VideoWriter_fourcc(*'DIVX'), fps, (96, 96))
else:
out = None
gt_out = None
pred_out = None
abs_idx = 0
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(generator,
total=int(np.ceil(len(mel_chunks)/args.wav2lip_batch_size)))):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
if args.save_frames:
if args.save_as_video:
pred_out.write(p.astype(np.uint8))
gt_resized = cv2.resize(f[y1:y2, x1:x2], (384, 384))
gt_out.write(gt_resized)
else:
if args.gt_path and args.pred_path:
os.makedirs(args.gt_path, exist_ok=True)
os.makedirs(args.pred_path, exist_ok=True)
cv2.imwrite(f"{args.gt_path}/{args.image_prefix}{abs_idx}.png", f[y1:y2, x1:x2])
cv2.imwrite(f"{args.pred_path}/{args.image_prefix}{abs_idx}.png", p)
abs_idx += 1
if not args.no_sr:
if args.enhance_face is None:
p = upscale(p, 0, run_params)
elif args.enhance_face == 'codeformer':
p = upscale(p, 2, [run_params, device, args.fidelity_weight])
elif args.enhance_face == 'gfpgan':
p = upscale(p, 1, run_params)
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
if not args.no_seg and seg_net is not None:
p = swap_regions(f[y1:y2, x1:x2], p, seg_net)
f[y1:y2, x1:x2] = p
if out:
out.write(f)
if out:
out.release()
if args.save_as_video:
final_command = f'ffmpeg -y -i "{args.audio}" -i "{result_avi}" -strict -2 -q:v 1 "{args.outfile}"'
subprocess.call(final_command, shell=(platform.system() != 'Windows'))
if args.save_frames and args.save_as_video:
gt_out.release()
pred_out.release()
gt_video_cmd = f'ffmpeg -y -i "{os.path.join(os.path.dirname(args.outfile), "gt.avi")}" -i "{args.audio}" -strict -2 -q:v 1 "{args.gt_path}"'
pred_video_cmd = f'ffmpeg -y -i "{os.path.join(os.path.dirname(args.outfile), "pred.avi")}" -i "{args.audio}" -strict -2 -q:v 1 "{args.pred_path}"'
subprocess.call(gt_video_cmd, shell=(platform.system() != 'Windows'))
subprocess.call(pred_video_cmd, shell=(platform.system() != 'Windows'))
if __name__ == '__main__':
main()