MIDI-3D / app.py
huanngzh's picture
update gpu duration
ab72440
import json
import os
import random
import tempfile
from typing import Any, List, Union
import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
from gradio_image_prompter import ImagePrompter
from gradio_litmodel3d import LitModel3D
from huggingface_hub import snapshot_download
from PIL import Image
from skimage import measure
from transformers import AutoModelForMaskGeneration, AutoProcessor
from midi.pipelines.pipeline_midi import MIDIPipeline
from midi.utils.smoothing import smooth_gpu
from scripts.grounding_sam import plot_segmentation, segment
from scripts.inference_midi import preprocess_image, split_rgb_mask
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
REPO_ID = "VAST-AI/MIDI-3D"
MARKDOWN = """
## Image to 3D Scene with [MIDI-3D](https://huanngzh.github.io/MIDI-Page/)
<b>Important!</b> Please check out our [instruction video](https://github.com/user-attachments/assets/814c046e-f5c3-47cf-bb56-60154be8374c)!
1. Upload an image, and draw bounding boxes for each instance by holding and dragging the mouse. Then clik "Run Segmentation" to generate the segmentation result. <b>Ensure instances should not be too small and bounding boxes fit snugly around each instance.</b>
2. <b>Check "Do image padding" in "Generation Settings" if instances in your image are too close to the image border.</b> Then click "Run Generation" to generate a 3D scene from the image and segmentation result.
3. If you find the generated 3D scene satisfactory, download it by clicking the "Download GLB" button.
"""
EXAMPLES = [
[
{
"image": "assets/example_data/Cartoon-Style/03_rgb.png",
},
"assets/example_data/Cartoon-Style/03_seg.png",
42,
False,
False,
],
[
{
"image": "assets/example_data/Cartoon-Style/01_rgb.png",
},
"assets/example_data/Cartoon-Style/01_seg.png",
42,
False,
False,
],
[
{
"image": "assets/example_data/Realistic-Style/02_rgb.png",
},
"assets/example_data/Realistic-Style/02_seg.png",
42,
False,
False,
],
[
{
"image": "assets/example_data/Cartoon-Style/00_rgb.png",
},
"assets/example_data/Cartoon-Style/00_seg.png",
42,
False,
False,
],
[
{
"image": "assets/example_data/Realistic-Style/00_rgb.png",
},
"assets/example_data/Realistic-Style/00_seg.png",
42,
False,
True,
],
[
{
"image": "assets/example_data/Realistic-Style/01_rgb.png",
},
"assets/example_data/Realistic-Style/01_seg.png",
42,
False,
True,
],
[
{
"image": "assets/example_data/Realistic-Style/05_rgb.png",
},
"assets/example_data/Realistic-Style/05_seg.png",
42,
False,
False,
],
]
os.makedirs(TMP_DIR, exist_ok=True)
# Prepare models
## Grounding SAM
segmenter_id = "facebook/sam-vit-base"
sam_processor = AutoProcessor.from_pretrained(segmenter_id)
sam_segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(
DEVICE, DTYPE
)
## MIDI-3D
local_dir = "pretrained_weights/MIDI-3D"
snapshot_download(repo_id=REPO_ID, local_dir=local_dir)
pipe: MIDIPipeline = MIDIPipeline.from_pretrained(local_dir).to(DEVICE, DTYPE)
pipe.init_custom_adapter(
set_self_attn_module_names=[
"blocks.8",
"blocks.9",
"blocks.10",
"blocks.11",
"blocks.12",
]
)
# Utils
def get_random_hex():
random_bytes = os.urandom(8)
random_hex = random_bytes.hex()
return random_hex
@spaces.GPU()
@torch.no_grad()
@torch.autocast(device_type=DEVICE, dtype=torch.bfloat16)
def run_segmentation(image_prompts: Any, polygon_refinement: bool) -> Image.Image:
rgb_image = image_prompts["image"].convert("RGB")
# pre-process the layers and get the xyxy boxes of each layer
if len(image_prompts["points"]) == 0:
gr.Error("Please draw bounding boxes for each instance on the image.")
boxes = [
[
[int(box[0]), int(box[1]), int(box[3]), int(box[4])]
for box in image_prompts["points"]
]
]
# run the segmentation
detections = segment(
sam_processor,
sam_segmentator,
rgb_image,
boxes=[boxes],
polygon_refinement=polygon_refinement,
)
seg_map_pil = plot_segmentation(rgb_image, detections)
torch.cuda.empty_cache()
return seg_map_pil
@torch.no_grad()
def run_midi(
pipe: Any,
rgb_image: Union[str, Image.Image],
seg_image: Union[str, Image.Image],
seed: int,
num_inference_steps: int = 50,
guidance_scale: float = 7.0,
do_image_padding: bool = False,
) -> trimesh.Scene:
if do_image_padding:
rgb_image, seg_image = preprocess_image(rgb_image, seg_image)
instance_rgbs, instance_masks, scene_rgbs = split_rgb_mask(rgb_image, seg_image)
num_instances = len(instance_rgbs)
outputs = pipe(
image=instance_rgbs,
mask=instance_masks,
image_scene=scene_rgbs,
attention_kwargs={"num_instances": num_instances},
generator=torch.Generator(device=pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
decode_progressive=True,
return_dict=False,
)
return outputs
@spaces.GPU(duration=180)
@torch.no_grad()
@torch.autocast(device_type=DEVICE, dtype=torch.bfloat16)
def run_generation(
rgb_image: Any,
seg_image: Union[str, Image.Image],
seed: int,
randomize_seed: bool = False,
num_inference_steps: int = 50,
guidance_scale: float = 7.0,
do_image_padding: bool = False,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not isinstance(rgb_image, Image.Image) and "image" in rgb_image:
rgb_image = rgb_image["image"]
outputs = run_midi(
pipe,
rgb_image,
seg_image,
seed,
num_inference_steps,
guidance_scale,
do_image_padding,
)
# marching cubes
trimeshes = []
for _, (logits_, grid_size, bbox_size, bbox_min, bbox_max) in enumerate(
zip(*outputs)
):
grid_logits = logits_.view(grid_size)
grid_logits = smooth_gpu(grid_logits, method="gaussian", sigma=1)
torch.cuda.empty_cache()
vertices, faces, normals, _ = measure.marching_cubes(
grid_logits.float().cpu().numpy(), 0, method="lewiner"
)
vertices = vertices / grid_size * bbox_size + bbox_min
# Trimesh
mesh = trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))
trimeshes.append(mesh)
# compose the output meshes
scene = trimesh.Scene(trimeshes)
tmp_path = os.path.join(TMP_DIR, f"midi3d_{get_random_hex()}.glb")
scene.export(tmp_path)
torch.cuda.empty_cache()
return tmp_path, tmp_path, seed
# Demo
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
with gr.Row():
image_prompts = ImagePrompter(label="Input Image", type="pil")
seg_image = gr.Image(
label="Segmentation Result", type="pil", format="png"
)
with gr.Accordion("Segmentation Settings", open=False):
polygon_refinement = gr.Checkbox(
label="Polygon Refinement", value=False
)
seg_button = gr.Button("Run Segmentation")
with gr.Accordion("Generation Settings", open=False):
do_image_padding = gr.Checkbox(label="Do image padding", value=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
gen_button = gr.Button("Run Generation", variant="primary")
with gr.Column():
model_output = LitModel3D(label="Generated GLB", exposure=1.0, height=500)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.Row():
gr.Examples(
examples=EXAMPLES,
fn=run_generation,
inputs=[image_prompts, seg_image, seed, randomize_seed, do_image_padding],
outputs=[model_output, download_glb, seed],
cache_examples=False,
)
seg_button.click(
run_segmentation,
inputs=[
image_prompts,
polygon_refinement,
],
outputs=[seg_image],
).then(lambda: gr.Button(interactive=True), outputs=[gen_button])
gen_button.click(
run_generation,
inputs=[
image_prompts,
seg_image,
seed,
randomize_seed,
num_inference_steps,
guidance_scale,
do_image_padding,
],
outputs=[model_output, download_glb, seed],
).then(lambda: gr.Button(interactive=True), outputs=[download_glb])
demo.launch()