MIDI-3D / midi /models /attention_processor.py
huanngzh's picture
update
c9724af
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.utils import logging
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph
from einops import rearrange
from torch import nn
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class TripoSGAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the TripoSG model. It applies a s normalization layer and rotary embedding on query and key vector.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim)
# instead of .view(..., 3, attn.heads, dim). So we need to re-split here.
if not attn.is_cross_attention:
qkv = torch.cat((query, key, value), dim=-1)
split_size = qkv.shape[-1] // attn.heads // 3
qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
else:
kv = torch.cat((key, value), dim=-1)
split_size = kv.shape[-1] // attn.heads // 2
kv = kv.view(batch_size, -1, attn.heads, split_size * 2)
key, value = torch.split(kv, split_size, dim=-1)
head_dim = key.shape[-1]
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
if not attn.is_cross_attention:
key = apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class FusedTripoSGAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused
projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on
query and key vector.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FusedTripoSGAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
# NOTE that pre-trained split heads first, then split qkv
if encoder_hidden_states is None:
qkv = attn.to_qkv(hidden_states)
split_size = qkv.shape[-1] // attn.heads // 3
qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
else:
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
query = attn.to_q(hidden_states)
kv = attn.to_kv(encoder_hidden_states)
split_size = kv.shape[-1] // attn.heads // 2
kv = kv.view(batch_size, -1, attn.heads, split_size * 2)
key, value = torch.split(kv, split_size, dim=-1)
head_dim = key.shape[-1]
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
if not attn.is_cross_attention:
key = apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class MIAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the MIDI model. It applies a normalization layer and rotary embedding on query and key vector.
"""
def __init__(self, use_mi: bool = True):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.use_mi = use_mi
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
num_instances: Optional[torch.IntTensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim)
# instead of .view(..., 3, attn.heads, dim). So we need to re-split here.
if not attn.is_cross_attention:
qkv = torch.cat((query, key, value), dim=-1)
split_size = qkv.shape[-1] // attn.heads // 3
qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
else:
kv = torch.cat((key, value), dim=-1)
split_size = kv.shape[-1] // attn.heads // 2
kv = kv.view(batch_size, -1, attn.heads, split_size * 2)
key, value = torch.split(kv, split_size, dim=-1)
head_dim = key.shape[-1]
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
if not attn.is_cross_attention:
key = apply_rotary_emb(key, image_rotary_emb)
if self.use_mi and num_instances is not None:
key = rearrange(
key, "(b ni) h nt c -> b h (ni nt) c", ni=num_instances
).repeat_interleave(num_instances, dim=0)
value = rearrange(
value, "(b ni) h nt c -> b h (ni nt) c", ni=num_instances
).repeat_interleave(num_instances, dim=0)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
dropout_p=0.0,
is_causal=False,
)
else:
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states