Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler # not sure | |
from diffusers.utils import logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from peft import LoraConfig, get_peft_model_state_dict | |
from transformers import ( | |
BitImageProcessor, | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
Dinov2Model, | |
) | |
from ..inference_utils import generate_dense_grid_points | |
from ..loaders import CustomAdapterMixin | |
from ..models.attention_processor import MIAttnProcessor2_0 | |
from ..models.autoencoders import TripoSGVAEModel | |
from ..models.transformers import TripoSGDiTModel, set_transformer_attn_processor | |
from .pipeline_triposg_output import TripoSGPipelineOutput | |
from .pipeline_utils import TransformerDiffusionMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError( | |
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
) | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class MIDIPipeline(DiffusionPipeline, TransformerDiffusionMixin, CustomAdapterMixin): | |
""" | |
Pipeline for image-to-scene generation based on pre-trained shape diffusion. | |
""" | |
def __init__( | |
self, | |
vae: TripoSGVAEModel, | |
transformer: TripoSGDiTModel, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
image_encoder_1: CLIPVisionModelWithProjection, | |
image_encoder_2: Dinov2Model, | |
feature_extractor_1: CLIPImageProcessor, | |
feature_extractor_2: BitImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
image_encoder_1=image_encoder_1, | |
image_encoder_2=image_encoder_2, | |
feature_extractor_1=feature_extractor_1, | |
feature_extractor_2=feature_extractor_2, | |
) | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def attention_kwargs(self): | |
return self._attention_kwargs | |
def interrupt(self): | |
return self._interrupt | |
def decode_progressive(self): | |
return self._decode_progressive | |
def encode_image_1(self, image, device, num_images_per_prompt): | |
dtype = next(self.image_encoder_1.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor_1(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeds = self.image_encoder_1(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
).unsqueeze(1) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
def encode_image_2( | |
self, | |
image_one, | |
image_two, | |
mask, | |
device, | |
num_images_per_prompt, | |
): | |
dtype = next(self.image_encoder_2.parameters()).dtype | |
images = [image_one, image_two, mask] | |
images_new = [] | |
for i, image in enumerate(images): | |
if not isinstance(image, torch.Tensor): | |
if i <= 1: | |
images_new.append( | |
self.feature_extractor_2( | |
image, return_tensors="pt" | |
).pixel_values | |
) | |
else: | |
image = [ | |
torch.from_numpy( | |
(np.array(im) / 255.0).astype(np.float32) | |
).unsqueeze(0) | |
for im in image | |
] | |
image = torch.stack(image, dim=0) | |
images_new.append( | |
F.interpolate( | |
image, size=images_new[0].shape[-2:], mode="nearest" | |
) | |
) | |
image = torch.cat(images_new, dim=1).to(device=device, dtype=dtype) | |
image_embeds = self.image_encoder_2(image).last_hidden_state | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
def prepare_latents( | |
self, | |
batch_size, | |
num_tokens, | |
num_channels_latents, | |
dtype, | |
device, | |
generator, | |
latents: Optional[torch.Tensor] = None, | |
): | |
if latents is not None: | |
return latents.to(device=device, dtype=dtype) | |
shape = (batch_size, num_tokens, num_channels_latents) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
return latents | |
def decode_latents( | |
self, | |
latents: torch.Tensor, | |
sampled_points: torch.Tensor, | |
decode_progressive: bool = False, | |
decode_to_cpu: bool = False, | |
# Params for sampling points | |
bbox_min: np.ndarray = np.array([-1.005, -1.005, -1.005]), | |
bbox_max: np.ndarray = np.array([1.005, 1.005, 1.005]), | |
octree_depth: int = 8, | |
indexing: str = "ij", | |
padding: float = 0.05, | |
): | |
device, dtype = latents.device, latents.dtype | |
batch_size = latents.shape[0] | |
grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = [], [], [], [] | |
if sampled_points is None: | |
sampled_points, grid_size, bbox_size = generate_dense_grid_points( | |
bbox_min, bbox_max, octree_depth, indexing | |
) | |
sampled_points = torch.FloatTensor(sampled_points).to( | |
device=device, dtype=dtype | |
) | |
sampled_points = sampled_points.unsqueeze(0).expand(batch_size, -1, -1) | |
grid_sizes.append(grid_size) | |
bbox_sizes.append(bbox_size) | |
bbox_mins.append(bbox_min) | |
bbox_maxs.append(bbox_max) | |
self.vae: TripoSGVAEModel | |
output = self.vae.decode( | |
latents, sampled_points=sampled_points, to_cpu=decode_to_cpu | |
).sample | |
if not decode_progressive: | |
return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs) | |
grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = [], [], [], [] | |
sampled_points_list = [] | |
for i in range(batch_size): | |
sdf_ = output[i].squeeze(-1) # [num_points] | |
sampled_points_ = sampled_points[i] | |
occupied_points = sampled_points_[sdf_ <= 0] # [num_occupied_points, 3] | |
if occupied_points.shape[0] == 0: | |
logger.warning( | |
f"No occupied points found in batch {i}. Using original bounding box." | |
) | |
else: | |
bbox_min = occupied_points.min(dim=0).values | |
bbox_max = occupied_points.max(dim=0).values | |
bbox_min = (bbox_min - padding).float().cpu().numpy() | |
bbox_max = (bbox_max + padding).float().cpu().numpy() | |
sampled_points_, grid_size, bbox_size = generate_dense_grid_points( | |
bbox_min, bbox_max, octree_depth, indexing | |
) | |
sampled_points_ = torch.FloatTensor(sampled_points_).to( | |
device=device, dtype=dtype | |
) | |
sampled_points_list.append(sampled_points_) | |
grid_sizes.append(grid_size) | |
bbox_sizes.append(bbox_size) | |
bbox_mins.append(bbox_min) | |
bbox_maxs.append(bbox_max) | |
sampled_points = torch.stack(sampled_points_list, dim=0) | |
# Re-decode the new sampled points | |
output = self.vae.decode( | |
latents, sampled_points=sampled_points, to_cpu=decode_to_cpu | |
).sample | |
return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs) | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
mask: PipelineImageInput, | |
image_scene: PipelineImageInput, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.0, | |
num_images_per_prompt: int = 1, | |
sampled_points: Optional[torch.Tensor] = None, | |
decode_progressive: bool = False, | |
decode_to_cpu: bool = False, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
output_type: Optional[str] = "mesh_vf", | |
return_dict: bool = True, | |
): | |
# 1. Check inputs. Raise error if not correct | |
# TODO | |
self._decode_progressive = decode_progressive | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
elif isinstance(image, list): | |
batch_size = len(image) | |
elif isinstance(image, torch.Tensor): | |
batch_size = image.shape[0] | |
else: | |
raise ValueError("Invalid input type for image") | |
device = self._execution_device | |
# 3. Encode condition | |
image_embeds_1, negative_image_embeds_1 = self.encode_image_1( | |
image, device, num_images_per_prompt | |
) | |
image_embeds_2, negative_image_embeds_2 = self.encode_image_2( | |
image, image_scene, mask, device, num_images_per_prompt | |
) | |
if self.do_classifier_free_guidance: | |
image_embeds_1 = torch.cat([negative_image_embeds_1, image_embeds_1], dim=0) | |
image_embeds_2 = torch.cat([negative_image_embeds_2, image_embeds_2], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps | |
) | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latent variables | |
num_tokens = self.transformer.config.width | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_tokens, | |
num_channels_latents, | |
image_embeds_1.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) | |
if self.do_classifier_free_guidance | |
else latents | |
) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
noise_pred = self.transformer( | |
latent_model_input, | |
timestep, | |
encoder_hidden_states=image_embeds_1, | |
encoder_hidden_states_2=image_embeds_2, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_image = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_image - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step( | |
noise_pred, t, latents, return_dict=False | |
)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
image_embeds_1 = callback_outputs.pop( | |
"image_embeds_1", image_embeds_1 | |
) | |
negative_image_embeds_1 = callback_outputs.pop( | |
"negative_image_embeds_1", negative_image_embeds_1 | |
) | |
image_embeds_2 = callback_outputs.pop( | |
"image_embeds_2", image_embeds_2 | |
) | |
negative_image_embeds_2 = callback_outputs.pop( | |
"negative_image_embeds_2", negative_image_embeds_2 | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = None, None, None, None | |
if output_type == "latent": | |
output = latents | |
else: | |
output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = self.decode_latents( | |
latents, | |
sampled_points=sampled_points, | |
decode_progressive=decode_progressive, | |
decode_to_cpu=decode_to_cpu, | |
) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs) | |
return TripoSGPipelineOutput( | |
samples=output, | |
grid_sizes=grid_sizes, | |
bbox_sizes=bbox_sizes, | |
bbox_mins=bbox_mins, | |
bbox_maxs=bbox_maxs, | |
) | |
def _init_custom_adapter( | |
self, set_self_attn_module_names: Optional[List[str]] = None | |
): | |
# Set attention processor | |
func_default = lambda name, hs, cad, ap: MIAttnProcessor2_0(use_mi=False) | |
set_transformer_attn_processor( # avoid warning | |
self.transformer, | |
set_self_attn_proc_func=func_default, | |
set_cross_attn_1_proc_func=func_default, | |
set_cross_attn_2_proc_func=func_default, | |
) | |
set_transformer_attn_processor( | |
self.transformer, | |
set_self_attn_proc_func=lambda name, hs, cad, ap: MIAttnProcessor2_0(), | |
set_self_attn_module_names=set_self_attn_module_names, | |
) | |