Spaces:
Sleeping
Sleeping
File size: 8,595 Bytes
a870321 a7620c3 a870321 37f1879 71ec6e3 54c2fd6 9def845 a870321 cb6c3df a870321 a7620c3 a870321 f338983 cb6c3df a870321 93147ba c52acae a7620c3 93147ba 68ee842 0c60363 c52acae a7620c3 a870321 0c60363 a7620c3 a870321 0c60363 a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 cb6c3df a870321 c839178 a870321 a7620c3 68ee842 cb6c3df 93147ba cb6c3df a870321 c839178 a870321 436ca04 3468720 a870321 cb6c3df a870321 93147ba a870321 cb6c3df aca300e 0c60363 93147ba 0c60363 a870321 cb6c3df a870321 cb6c3df 93147ba a870321 5b4642b a870321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import argparse
import os
import glob
import torch
from PIL import Image
from copy import deepcopy
import sys
import tempfile
import subprocess
from huggingface_hub import snapshot_download
LOCAL_CODE = os.environ.get("LOCAL_CODE", "1") == "1"
AUTH = ("admin", os.environ["PASSWD"]) if "PASSWD" in os.environ else None
code_dir = snapshot_download("zouzx/TriplaneGaussian", local_dir="./code", token=os.environ["HF_TOKEN"]) if not LOCAL_CODE else "./code"
sys.path.append(code_dir)
if not LOCAL_CODE:
subprocess.run(["pip", "install", "--upgrade", "gradio"])
import gradio as gr
print("gr version: ", gr.__version__)
from utils import image_preprocess, pred_bbox, sam_init, sam_out_nosave, todevice
from gradio_splatting.backend.gradio_model3dgs import Model3DGS
import tgs
from tgs.utils.config import ExperimentConfig, load_config
from tgs.systems.infer import TGS
SAM_CKPT_PATH = "code/checkpoints/sam_vit_h_4b8939.pth"
MODEL_CKPT_PATH = "code/checkpoints/tgs_lvis_100v_rel.ckpt"
CONFIG = "code/configs/single-rel.yaml"
EXP_ROOT_DIR = "./outputs-gradio"
os.makedirs(EXP_ROOT_DIR, exist_ok=True)
gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
device = "cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu"
print("device: ", device)
# load SAM checkpoint
# sam_predictor = sam_init(SAM_CKPT_PATH, gpu)
# print("load sam ckpt done.")
# init system
base_cfg: ExperimentConfig
base_cfg = load_config(CONFIG, cli_args=[], n_gpus=1)
base_cfg.system.weights = MODEL_CKPT_PATH
system = TGS(cfg=base_cfg.system).to(device)
print("load model ckpt done.")
HEADER = """
# Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers
<div>
<a style="display: inline-block;" href="https://arxiv.org/abs/2312.09147"><img src="https://img.shields.io/badge/arxiv-2312.09147-B31B1B.svg"></a>
</div>
TGS enables fast reconstruction from single-view image in a few seconds based on a hybrid Triplane-Gaussian 3D representation.
This model is trained on Objaverse-LVIS (**~45K** synthetic objects) only. And note that we normalize the input camera pose to a pre-set viewpoint during training stage following LRM, rather than directly using camera pose of input camera as implemented in our original paper.
**Tips:**
1. If you find the result is unsatisfied, please try to change the camera distance. It perhaps improves the results.
2. Please wait until the completion of the reconstruction of the previous model before proceeding with the next one, otherwise, it may cause bug. We will fix it soon.
"""
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def resize_image(input_raw, size):
w, h = input_raw.size
ratio = size / max(w, h)
resized_w = int(w * ratio)
resized_h = int(h * ratio)
return input_raw.resize((resized_w, resized_h), Image.Resampling.LANCZOS)
def preprocess(image_path, save_path):
# if not preprocess:
# print("No preprocess")
# # return image_path
# input_raw = Image.open(image_path)
# input_raw.thumbnail([512, 512], Image.Resampling.LANCZOS)
# input_raw = resize_image(input_raw, 512)
# print("image size:", input_raw.size)
# image_sam = sam_out_nosave(
# sam_predictor, input_raw.convert("RGB"), pred_bbox(input_raw)
# )
save_path = os.path.join(save_path, "input_rgba.png")
# if save_path is None:
# save_path, ext = os.path.splitext(image_path)
# save_path = save_path + "_rgba.png"
# image_preprocess(image_sam, save_path, lower_contrast=False, rescale=True)
subprocess.run([f"python run_sam.py --image_path {image_path} --save_path {save_path}"], shell=True)
# print("image save path = ", save_path)
return save_path
def init_trial_dir():
trial_dir = tempfile.TemporaryDirectory(dir=EXP_ROOT_DIR).name
os.makedirs(trial_dir, exist_ok=True)
return trial_dir
@torch.no_grad()
def infer(image_path: str,
cam_dist: float,
save_path: str,
only_3dgs: bool = False):
data_cfg = deepcopy(base_cfg.data)
data_cfg.only_3dgs = only_3dgs
data_cfg.cond_camera_distance = cam_dist
data_cfg.eval_camera_distance = cam_dist
data_cfg.image_list = [image_path]
dm = tgs.find(base_cfg.data_cls)(data_cfg)
dm.setup()
for batch_idx, batch in enumerate(dm.test_dataloader()):
batch = todevice(batch, device)
system.test_step(save_path, batch, batch_idx, save_3dgs=only_3dgs)
if not only_3dgs:
system.on_test_epoch_end(save_path)
def run(image_path: str,
cam_dist: float,
save_path: str):
infer(image_path, cam_dist, save_path, only_3dgs=True)
gs = glob.glob(os.path.join(save_path, "*.ply"))[0]
# print("save gs", gs)
return gs
def run_video(image_path: str,
cam_dist: float,
save_path: str):
infer(image_path, cam_dist, save_path)
video = glob.glob(os.path.join(save_path, "*.mp4"))[0]
# print("save video", video)
return video
def launch(port):
with gr.Blocks(
title="TGS - Demo"
) as demo:
with gr.Row(variant='panel'):
gr.Markdown(HEADER)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(value=None, width=512, height=512, type="filepath", sources="upload", label="Input Image")
gr.Markdown(
"""
**Camera distance** denotes the distance between camera center and scene center.
If you find the 3D model appears flattened, you can increase it. Conversely, if the 3D model appears thick, you can decrease it.
"""
)
camera_dist_slider = gr.Slider(1.0, 4.0, value=1.9, step=0.1, label="Camera Distance")
# preprocess_ckb = gr.Checkbox(value=True, label="Remove background")
img_run_btn = gr.Button("Reconstruction", variant="primary")
gr.Examples(
examples=[
"example_images/green_parrot.webp",
"example_images/rusty_gameboy.webp",
"example_images/a_pikachu_with_smily_face.webp",
"example_images/an_otter_wearing_sunglasses.webp",
"example_images/lumberjack_axe.webp",
"example_images/medieval_shield.webp",
"example_images/a_cat_dressed_as_the_pope.webp",
"example_images/a_cute_little_frog_comicbook_style.webp",
"example_images/a_purple_winter_jacket.webp",
"example_images/MP5,_high_quality,_ultra_realistic.webp",
"example_images/retro_pc_photorealistic_high_detailed.webp",
"example_images/stratocaster_guitar_pixar_style.webp"
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=40
)
with gr.Column(scale=1):
with gr.Row(variant='panel'):
seg_image = gr.Image(value=None, width="auto", type="filepath", image_mode="RGBA", label="Segmented Image", interactive=False)
output_video = gr.Video(value=None, width="auto", label="Rendered Video", autoplay=True)
output_3dgs = Model3DGS(value=None, label="3D Model")
trial_dir = gr.State()
img_run_btn.click(
fn=assert_input_image,
inputs=[input_image],
queue=False
).success(
fn=init_trial_dir,
outputs=[trial_dir],
queue=False
).success(
fn=preprocess,
inputs=[input_image, trial_dir],
outputs=[seg_image],
).success(fn=run,
inputs=[seg_image, camera_dist_slider, trial_dir],
outputs=[output_3dgs],
).success(fn=run_video,
inputs=[seg_image, camera_dist_slider, trial_dir],
outputs=[output_video])
launch_args = {"server_port": port}
demo.queue(max_size=20)
demo.launch(auth=AUTH, **launch_args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args, extra = parser.parse_known_args()
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
launch(args.port) |