File size: 15,409 Bytes
a43a8dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ddb17
a43a8dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ddb17
a43a8dc
 
 
 
12ddb17
a43a8dc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import spaces
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
import trimesh
import random
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from huggingface_hub import hf_hub_download, snapshot_download
import subprocess
import shutil

# install others
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16

print("DEVICE: ", DEVICE)

DEFAULT_FACE_NUMBER = 100000
MAX_SEED = np.iinfo(np.int32).max
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"

RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"

TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)

TRIPOSG_CODE_DIR = "./triposg"
if not os.path.exists(TRIPOSG_CODE_DIR):
    os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")

MV_ADAPTER_CODE_DIR = "./mv_adapter"
if not os.path.exists(MV_ADAPTER_CODE_DIR):
    os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR}")

import sys
sys.path.append(TRIPOSG_CODE_DIR)
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
sys.path.append(MV_ADAPTER_CODE_DIR)
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))

HEADER = """

# 🔮 Image to 3D with [TripoSG](https://github.com/VAST-AI-Research/TripoSG)

## State-of-the-art Open Source 3D Generation Using Large-Scale Rectified Flow Transformers

<p style="font-size: 1.1em;">By <a href="https://www.tripo3d.ai/" style="color: #1E90FF; text-decoration: none; font-weight: bold;">Tripo</a></p>

## 📋 Quick Start Guide:
1. **Upload an image** (single object works best)
2. Click **Generate Shape** to create the 3D mesh
3. Click **Apply Texture** to add textures
4. Use **Download GLB** to save your 3D model
5. Adjust parameters under **Generation Settings** for fine-tuning

Best results come from clean, well-lit images with clear subject isolation. Try it now!

<p style="font-size: 0.9em; margin-top: 10px;">Texture generation powered by <a href="https://github.com/huanngzh/MV-Adapter" style="color: #1E90FF; text-decoration: none;">MV-Adapter</a> - a versatile multi-view adapter for consistent texture generation. Try the <a href="https://huggingface.co/spaces/VAST-AI/MV-Adapter-I2MV-SDXL" style="color: #1E90FF; text-decoration: none;">MV-Adapter demo</a> for multi-view image generation.</p>

"""

# # triposg
from image_process import prepare_image
from briarmbg import BriaRMBG
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
rmbg_net.eval()
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)

# mv adapter
NUM_VIEWS = 6
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
mv_adapter_pipe = prepare_pipeline(
    base_model="stabilityai/stable-diffusion-xl-base-1.0",
    vae_model="madebyollin/sdxl-vae-fp16-fix",
    unet_model=None,
    lora_model=None,
    adapter_path="huanngzh/mv-adapter",
    scheduler=None,
    num_views=NUM_VIEWS,
    device=DEVICE,
    dtype=torch.float16,
)
birefnet = AutoModelForImageSegmentation.from_pretrained(
        "ZhengPeng7/BiRefNet", trust_remote_code=True
    )
birefnet.to(DEVICE)
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)

if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
    hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
if not os.path.exists("checkpoints/big-lama.pt"):
    subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)

def start_session(req: gr.Request):
    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(save_dir, exist_ok=True)
    print("start session, mkdir", save_dir)

def end_session(req: gr.Request):
    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(save_dir)

def get_random_hex():
    random_bytes = os.urandom(8)
    random_hex = random_bytes.hex()
    return random_hex

def get_random_seed(randomize_seed, seed):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=180)
def run_full(image: str, req: gr.Request):
    seed = 0
    num_inference_steps = 50
    guidance_scale = 7.5
    simplify = True
    target_face_num = DEFAULT_FACE_NUMBER
    
    image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)

    outputs = triposg_pipe(
        image=image_seg,
        generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale
    ).samples[0]
    print("mesh extraction done")
    mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))

    if simplify:
        print("start simplify")
        from utils import simplify_mesh
        mesh = simplify_mesh(mesh, target_face_num)
    
    save_dir = os.path.join(TMP_DIR, "examples")
    os.makedirs(save_dir, exist_ok=True)
    mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
    mesh.export(mesh_path)
    print("save to ", mesh_path)

    torch.cuda.empty_cache()

    height, width = 768, 768
    # Prepare cameras
    cameras = get_orthogonal_camera(
        elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
        distance=[1.8] * NUM_VIEWS,
        left=-0.55,
        right=0.55,
        bottom=-0.55,
        top=0.55,
        azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
        device=DEVICE,
    )
    ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")

    mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
    render_out = render(
        ctx,
        mesh,
        cameras,
        height=height,
        width=width,
        render_attr=False,
        normal_background=0.0,
    )
    control_images = (
        torch.cat(
            [
                (render_out.pos + 0.5).clamp(0, 1),
                (render_out.normal / 2 + 0.5).clamp(0, 1),
            ],
            dim=-1,
        )
        .permute(0, 3, 1, 2)
        .to(DEVICE)
    )

    image = Image.open(image)
    image = remove_bg_fn(image)
    image = preprocess_image(image, height, width)

    pipe_kwargs = {}
    if seed != -1 and isinstance(seed, int):
        pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)

    images = mv_adapter_pipe(
        "high quality",
        height=height,
        width=width,
        num_inference_steps=15,
        guidance_scale=3.0,
        num_images_per_prompt=NUM_VIEWS,
        control_image=control_images,
        control_conditioning_scale=1.0,
        reference_image=image,
        reference_conditioning_scale=1.0,
        negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
        cross_attention_kwargs={"scale": 1.0},
        **pipe_kwargs,
    ).images

    torch.cuda.empty_cache()

    mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
    make_image_grid(images, rows=1).save(mv_image_path)

    from texture import TexturePipeline, ModProcessConfig
    texture_pipe = TexturePipeline(
        upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
        inpaint_ckpt_path="checkpoints/big-lama.pt",
        device=DEVICE,
    )

    textured_glb_path = texture_pipe(
        mesh_path=mesh_path,
        save_dir=save_dir,
        save_name=f"texture_mesh_{get_random_hex()}.glb",
        uv_unwarp=True,
        uv_size=4096,
        rgb_path=mv_image_path,
        rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
        camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
    )

    return image_seg, mesh_path, textured_glb_path
    

@spaces.GPU()
@torch.no_grad()
def run_segmentation(image: str):
    image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
    return image

@spaces.GPU(duration=90)
@torch.no_grad()
def image_to_3d(
    image: Image.Image,
    seed: int,
    num_inference_steps: int,
    guidance_scale: float,
    simplify: bool,
    target_face_num: int,
    req: gr.Request
):
    outputs = triposg_pipe(
        image=image,
        generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale
    ).samples[0]
    print("mesh extraction done")
    mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))

    if simplify:
        print("start simplify")
        from utils import simplify_mesh
        mesh = simplify_mesh(mesh, target_face_num)
    
    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
    mesh.export(mesh_path)
    print("save to ", mesh_path)

    torch.cuda.empty_cache()

    return mesh_path

@spaces.GPU(duration=120)
@torch.no_grad()
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
    height, width = 768, 768
    # Prepare cameras
    cameras = get_orthogonal_camera(
        elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
        distance=[1.8] * NUM_VIEWS,
        left=-0.55,
        right=0.55,
        bottom=-0.55,
        top=0.55,
        azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
        device=DEVICE,
    )
    ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")

    mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
    render_out = render(
        ctx,
        mesh,
        cameras,
        height=height,
        width=width,
        render_attr=False,
        normal_background=0.0,
    )
    control_images = (
        torch.cat(
            [
                (render_out.pos + 0.5).clamp(0, 1),
                (render_out.normal / 2 + 0.5).clamp(0, 1),
            ],
            dim=-1,
        )
        .permute(0, 3, 1, 2)
        .to(DEVICE)
    )

    image = Image.open(image)
    image = remove_bg_fn(image)
    image = preprocess_image(image, height, width)

    pipe_kwargs = {}
    if seed != -1 and isinstance(seed, int):
        pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)

    images = mv_adapter_pipe(
        "high quality",
        height=height,
        width=width,
        num_inference_steps=15,
        guidance_scale=3.0,
        num_images_per_prompt=NUM_VIEWS,
        control_image=control_images,
        control_conditioning_scale=1.0,
        reference_image=image,
        reference_conditioning_scale=1.0,
        negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
        cross_attention_kwargs={"scale": 1.0},
        **pipe_kwargs,
    ).images

    torch.cuda.empty_cache()

    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
    make_image_grid(images, rows=1).save(mv_image_path)

    from texture import TexturePipeline, ModProcessConfig
    texture_pipe = TexturePipeline(
        upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
        inpaint_ckpt_path="checkpoints/big-lama.pt",
        device=DEVICE,
    )

    textured_glb_path = texture_pipe(
        mesh_path=mesh_path,
        save_dir=save_dir,
        save_name=f"texture_mesh_{get_random_hex()}.glb",
        uv_unwarp=True,
        uv_size=4096,
        rgb_path=mv_image_path,
        rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
        camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
    )

    return textured_glb_path


with gr.Blocks(title="TripoSG") as demo:
    gr.Markdown(HEADER)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_prompts = gr.Image(label="Input Image", type="filepath")
                seg_image = gr.Image(
                    label="Segmentation Result", type="pil", format="png", interactive=False
                )

            with gr.Accordion("Generation Settings", open=True):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=0,
                    value=0
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=8,
                    maximum=50,
                    step=1,
                    value=50,
                )
                guidance_scale = gr.Slider(
                    label="CFG scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7.0,
                )

                with gr.Row():
                    reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
                    target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")

                gen_button = gr.Button("Generate Shape", variant="primary")
                gen_texture_button = gr.Button("Apply Texture", interactive=False)

        with gr.Column():
            model_output = gr.Model3D(label="Generated GLB", interactive=False)
            textured_model_output = gr.Model3D(label="Textured GLB", interactive=False)

    with gr.Row():
        examples = gr.Examples(
            examples=[
                f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
                for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
            ],
            fn=run_full,
            inputs=[image_prompts],
            outputs=[seg_image, model_output, textured_model_output],
            cache_examples=True,
        )

    gen_button.click(
        run_segmentation,
        inputs=[image_prompts],
        outputs=[seg_image]
    ).then(
        get_random_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[
            seg_image,
            seed,
            num_inference_steps,
            guidance_scale,
            reduce_face,
            target_face_num
        ],
        outputs=[model_output]
    ).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])

    gen_texture_button.click(
        run_texture,
        inputs=[image_prompts, model_output, seed],
        outputs=[textured_model_output]
    )

    demo.load(start_session)
    demo.unload(end_session)

demo.launch()