Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel | |
from vita.util.s2wrapper import forward as multiscale_forward | |
class SiglipVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = -2 | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) | |
def load_model(self): | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) | |
self.image_processor.crop_size = self.image_processor.size | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower( | |
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
output_hidden_states=True, | |
) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower( | |
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True | |
) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
class SiglipVisionTowerS2(SiglipVisionTower): | |
def __init__(self, vision_tower, args, delay_load=False): | |
self.s2_scales = getattr(args, "s2_scales", "384,768,1152") | |
self.s2_scales = list(map(int, self.s2_scales.split(","))) | |
self.s2_scales.sort() | |
self.s2_split_size = self.s2_scales[0] | |
self.s2_image_size = self.s2_scales[-1] | |
super().__init__(vision_tower, args, delay_load) | |
self.multiscale_forward = multiscale_forward | |
if not delay_load: | |
self.image_processor.size["height"] = self.image_processor.size[ | |
"width" | |
] = self.s2_image_size | |
self.image_processor.crop_size["height"] = self.image_processor.crop_size[ | |
"width" | |
] = self.s2_image_size | |
def load_model(self): | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) | |
self.image_processor.crop_size = self.image_processor.size | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.image_processor.size["height"] = self.image_processor.size[ | |
"width" | |
] = self.s2_image_size | |
self.image_processor.crop_size["height"] = self.image_processor.crop_size[ | |
"width" | |
] = self.s2_image_size | |
self.is_loaded = True | |
def forward_feature(self, images): | |
image_forward_outs = self.vision_tower( | |
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True | |
) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_feature = self.multiscale_forward( | |
self.forward_feature, | |
image.unsqueeze(0), | |
img_sizes=self.s2_scales, | |
max_split_size=self.s2_split_size, | |
) | |
image_features.append(image_feature) | |
else: | |
image_features = self.multiscale_forward( | |
self.forward_feature, | |
images, | |
img_sizes=self.s2_scales, | |
max_split_size=self.s2_split_size, | |
) | |
return image_features | |
def hidden_size(self): | |
return self.config.hidden_size * len(self.s2_scales) | |