Spaces:
Sleeping
Sleeping
File size: 4,326 Bytes
faea948 46bf7d3 faea948 fb17aa5 46bf7d3 faea948 46bf7d3 2a063fd 46bf7d3 2a063fd 46bf7d3 2a063fd 46bf7d3 4687ad4 46bf7d3 faea948 46bf7d3 4687ad4 46bf7d3 b1621cd 46bf7d3 b1621cd 46bf7d3 b1621cd 46bf7d3 b1621cd 46bf7d3 b1621cd 46bf7d3 b1621cd 46bf7d3 2a063fd 46bf7d3 faea948 46bf7d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import streamlit as st
import folium
from geopy.geocoders import Nominatim
from geopy.distance import geodesic
from itertools import combinations
import numpy as np
import polyline
import requests
# Algoritma Held-Karp untuk TSP
def held_karp_tsp(dist_matrix):
n = len(dist_matrix)
inf = float('inf')
memo = {}
# Initialize memo table for subsets of size 2
for i in range(1, n):
memo[(1 << i, i)] = dist_matrix[0][i]
# Fill memo table for larger subsets
for subset_size in range(2, n):
for subset in combinations(range(1, n), subset_size):
bits = 0
for bit in subset:
bits |= 1 << bit
for next_city in subset:
prev_bits = bits & ~(1 << next_city)
min_dist = inf
for k in subset:
if k == next_city:
continue
current_dist = memo[(prev_bits, k)] + dist_matrix[k][next_city]
if current_dist < min_dist:
min_dist = current_dist
memo[(bits, next_city)] = min_dist
# Find optimal tour
bits = (2 ** n - 1) - 1
min_tour_cost = inf
last_city = None
for k in range(1, n):
tour_cost = memo[(bits, k)] + dist_matrix[k][0]
if tour_cost < min_tour_cost:
min_tour_cost = tour_cost
last_city = k
# Backtrack to find the full tour
tour = [0]
bits = (2 ** n - 1) - 1
for _ in range(n - 1):
tour.append(last_city)
bits &= ~(1 << last_city)
next_city = min(
[(memo[(bits, k)] + dist_matrix[k][last_city], k) for k in range(n) if (bits, k) in memo],
key=lambda x: x[0],
)[1]
last_city = next_city
tour.append(0)
return min_tour_cost, tour
# Mendapatkan koordinat kota dari nama
def get_coordinates(city_name):
geolocator = Nominatim(user_agent="tsp_app")
location = geolocator.geocode(city_name)
if location:
return (location.latitude, location.longitude)
else:
return None
# Menghitung jarak antar semua pasangan kota
def create_distance_matrix(coordinates):
n = len(coordinates)
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i + 1, n):
dist_matrix[i][j] = geodesic(coordinates[i], coordinates[j]).kilometers
dist_matrix[j][i] = dist_matrix[i][j]
return dist_matrix
# Fungsi untuk menampilkan peta rute
def plot_route(map_obj, coordinates, route):
for i in range(len(route) - 1):
start = coordinates[route[i]]
end = coordinates[route[i + 1]]
folium.Marker(location=start, tooltip=f'City {route[i] + 1}').add_to(map_obj)
folium.Marker(location=end, tooltip=f'City {route[i + 1] + 1}').add_to(map_obj)
folium.PolyLine([start, end], color="blue", weight=2.5, opacity=1).add_to(map_obj)
# Add markers for start and end points
folium.Marker(location=coordinates[0], tooltip='Start', icon=folium.Icon(color="green")).add_to(map_obj)
folium.Marker(location=coordinates[route[-2]], tooltip='End', icon=folium.Icon(color="red")).add_to(map_obj)
return map_obj
# Streamlit UI
st.title("Traveling Salesman Problem Solver")
# Input kota
city_names = st.text_input("Masukkan nama kota (pisahkan dengan koma)", "Jakarta, Bandung, Surabaya, Yogyakarta")
city_list = [city.strip() for city in city_names.split(",")]
if len(city_list) < 2:
st.warning("Masukkan setidaknya dua kota.")
else:
coordinates = [get_coordinates(city) for city in city_list]
if None in coordinates:
st.error("Ada kota yang tidak ditemukan. Pastikan nama kota benar.")
else:
# Buat distance matrix
dist_matrix = create_distance_matrix(coordinates)
min_cost, optimal_route = held_karp_tsp(dist_matrix)
# Tampilkan hasil
st.write(f"Biaya total minimum: {min_cost:.2f} km")
st.write("Rute optimal:", " -> ".join([city_list[i] for i in optimal_route]))
# Buat peta
map_obj = folium.Map(location=coordinates[0], zoom_start=5)
plot_route(map_obj, coordinates, optimal_route)
# Render map
st_folium = st.components.v1.html(folium.Map._repr_html_(map_obj), width=700, height=500) |