File size: 4,487 Bytes
faea948
 
46bf7d3
 
 
faea948
 
46bf7d3
 
 
 
 
2a063fd
46bf7d3
 
 
2a063fd
46bf7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a063fd
46bf7d3
 
 
 
 
 
 
 
 
4687ad4
46bf7d3
 
 
 
 
 
 
 
 
 
 
faea948
46bf7d3
 
4687ad4
46bf7d3
 
 
 
 
 
 
 
b1621cd
46bf7d3
 
5376ed0
 
46bf7d3
 
 
5376ed0
46bf7d3
 
b1621cd
46bf7d3
 
 
 
 
 
 
 
b1621cd
46bf7d3
 
 
 
b1621cd
46bf7d3
 
b1621cd
46bf7d3
5376ed0
 
 
 
 
 
b1621cd
5376ed0
 
 
 
 
46bf7d3
2a063fd
46bf7d3
5376ed0
46bf7d3
 
 
 
5376ed0
faea948
46bf7d3
5376ed0
 
46bf7d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
import folium
from geopy.geocoders import Nominatim
from geopy.distance import geodesic
from itertools import combinations
import numpy as np

# Algoritma Held-Karp untuk TSP
def held_karp_tsp(dist_matrix):
    n = len(dist_matrix)
    inf = float('inf')
    memo = {}

    # Initialize memo table for subsets of size 2
    for i in range(1, n):
        memo[(1 << i, i)] = dist_matrix[0][i]

    # Fill memo table for larger subsets
    for subset_size in range(2, n):
        for subset in combinations(range(1, n), subset_size):
            bits = 0
            for bit in subset:
                bits |= 1 << bit
            for next_city in subset:
                prev_bits = bits & ~(1 << next_city)
                min_dist = inf
                for k in subset:
                    if k == next_city:
                        continue
                    current_dist = memo[(prev_bits, k)] + dist_matrix[k][next_city]
                    if current_dist < min_dist:
                        min_dist = current_dist
                memo[(bits, next_city)] = min_dist

    # Find optimal tour
    bits = (2 ** n - 1) - 1
    min_tour_cost = inf
    last_city = None
    for k in range(1, n):
        tour_cost = memo[(bits, k)] + dist_matrix[k][0]
        if tour_cost < min_tour_cost:
            min_tour_cost = tour_cost
            last_city = k

    # Backtrack to find the full tour
    tour = [0]
    bits = (2 ** n - 1) - 1
    for _ in range(n - 1):
        tour.append(last_city)
        bits &= ~(1 << last_city)
        next_city = min(
            [(memo[(bits, k)] + dist_matrix[k][last_city], k) for k in range(n) if (bits, k) in memo],
            key=lambda x: x[0],
        )[1]
        last_city = next_city

    tour.append(0)
    return min_tour_cost, tour

# Mendapatkan koordinat kota dari nama
def get_coordinates(city_name):
    geolocator = Nominatim(user_agent="tsp_app")
    location = geolocator.geocode(city_name)
    if location:
        return (location.latitude, location.longitude)
    else:
        return None

# Menghitung jarak antar semua pasangan kota
def create_distance_matrix(coordinates):
    valid_coordinates = [c for c in coordinates if c is not None]
    n = len(valid_coordinates)
    dist_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(i + 1, n):
            dist_matrix[i][j] = geodesic(valid_coordinates[i], valid_coordinates[j]).kilometers
            dist_matrix[j][i] = dist_matrix[i][j]
    return dist_matrix

# Fungsi untuk menampilkan peta rute
def plot_route(map_obj, coordinates, route):
    for i in range(len(route) - 1):
        start = coordinates[route[i]]
        end = coordinates[route[i + 1]]
        folium.Marker(location=start, tooltip=f'City {route[i] + 1}').add_to(map_obj)
        folium.Marker(location=end, tooltip=f'City {route[i + 1] + 1}').add_to(map_obj)
        folium.PolyLine([start, end], color="blue", weight=2.5, opacity=1).add_to(map_obj)

    # Add markers for start and end points
    folium.Marker(location=coordinates[0], tooltip='Start', icon=folium.Icon(color="green")).add_to(map_obj)
    folium.Marker(location=coordinates[route[-2]], tooltip='End', icon=folium.Icon(color="red")).add_to(map_obj)
    return map_obj

# Streamlit UI
st.title("Traveling Salesman Problem Solver")

# Input kota
st.subheader("Pilih Kota")
city_count = st.number_input("Jumlah kota", min_value=2, step=1)
city_names = []
for i in range(int(city_count)):
    city_name = st.text_input(f"Kota {i+1}", key=f"city_{i}")
    city_names.append(city_name)

if st.button("Optimasi Rute"):
    coordinates = [get_coordinates(city) for city in city_names]
    valid_coordinates = [c for c in coordinates if c is not None]

    if len(valid_coordinates) < 2:
        st.error("Ada kota yang tidak ditemukan. Pastikan nama kota benar.")
    else:
        # Buat distance matrix
        dist_matrix = create_distance_matrix(valid_coordinates)
        min_cost, optimal_route = held_karp_tsp(dist_matrix)
        
        # Tampilkan hasil
        st.write(f"Biaya total minimum: {min_cost:.2f} km")
        st.write("Rute optimal:", " -> ".join([city_names[i] for i in optimal_route]))

        # Buat peta
        map_obj = folium.Map(location=valid_coordinates[0], zoom_start=5)
        plot_route(map_obj, valid_coordinates, optimal_route)
        
        # Render map
        st_folium = st.components.v1.html(folium.Map._repr_html_(map_obj), width=700, height=500)