File size: 15,280 Bytes
57728d7
fab9033
 
024c6f2
fab9033
d924e11
57728d7
fab9033
d924e11
fab9033
d924e11
8b461d6
14e747f
57728d7
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
d093305
1bc1e75
fab9033
 
 
e84a5b4
fab9033
f56b01d
fab9033
 
 
 
 
e84a5b4
d093305
fab9033
 
d093305
fab9033
 
 
 
d093305
fab9033
 
 
 
024c6f2
 
fab9033
024c6f2
fab9033
024c6f2
fab9033
 
 
 
d093305
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
fab9033
d093305
fab9033
 
 
 
 
f56b01d
fab9033
 
 
e84a5b4
fab9033
 
 
 
 
024c6f2
fab9033
 
024c6f2
fab9033
 
 
e84a5b4
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
fab9033
 
 
 
 
 
 
 
024c6f2
fab9033
 
024c6f2
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
fab9033
 
 
024c6f2
fab9033
 
 
 
 
024c6f2
fab9033
 
 
 
 
 
 
d093305
fab9033
 
 
024c6f2
fab9033
 
 
024c6f2
fab9033
024c6f2
fab9033
 
 
 
 
 
 
 
e84a5b4
fab9033
 
 
e84a5b4
fab9033
 
e84a5b4
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b461d6
024c6f2
fab9033
 
024c6f2
 
fab9033
d093305
e84a5b4
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
fab9033
 
e84a5b4
fab9033
 
 
 
 
 
 
 
024c6f2
fab9033
 
d093305
 
fab9033
 
 
d093305
fab9033
 
f56b01d
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
024c6f2
 
e84a5b4
8b461d6
fab9033
 
 
024c6f2
8b461d6
fab9033
 
d093305
fab9033
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import gc
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Dict, Any, Type

import cv2
import gradio as gr
import numpy as np
import pandas as pd
import torch
import onnxruntime as rt
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import pipeline, Pipeline
from tqdm import tqdm

# Suppress a specific PIL warning about image size
Image.MAX_IMAGE_PIXELS = None

# --- Configuration ---
CACHE_DIR = "./hf_cache"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float32

print(f"Using device: {DEVICE} with dtype: {DTYPE}")

# ==================================================================================
# 1. MODEL ABSTRACTION: A unified interface for all scorers.
# ==================================================================================

class AestheticScorer(ABC):
    """Abstract base class for all aesthetic scoring models."""

    def __init__(self, model_name: str, repo_id: str, filename: str = None):
        self.model_name = model_name
        self.repo_id = repo_id
        self.filename = filename
        self._model = None
        print(f"Initializing scorer: {self.model_name}")

    @property
    def model(self):
        """Lazy-loads the model on first access."""
        if self._model is None:
            print(f"Loading model for '{self.model_name}'...")
            self._model = self.load_model()
            print(f"'{self.model_name}' model loaded.")
        return self._model

    def _download_model(self) -> str:
        """Downloads the model file from Hugging Face Hub."""
        return hf_hub_download(repo_id=self.repo_id, filename=self.filename, cache_dir=CACHE_DIR)

    @abstractmethod
    def load_model(self) -> Any:
        """Loads the model and any necessary preprocessors."""
        pass

    @abstractmethod
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        """Scores a batch of images and returns a list of floats."""
        pass

    def release_model(self):
        """Releases model from memory."""
        if self._model is not None:
            print(f"Releasing model: {self.model_name}")
            del self._model
            self._model = None
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

class PipelineScorer(AestheticScorer):
    """Scorer for models compatible with Hugging Face pipelines."""

    def load_model(self) -> Pipeline:
        """Loads a pipeline model."""
        return pipeline(
            "image-classification",
            model=self.repo_id,
            device=DEVICE,
        )

    @torch.no_grad()
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        """Scores a batch using the pipeline and extracts the 'hq' score."""
        results = self.model(image_batch)
        scores = []
        for res in results:
            try:
                # Find the score for the 'hq' (high quality) label
                hq_score = next(item['score'] for item in res if item['label'] == 'hq')
                scores.append(round(hq_score * 10.0, 4))
            except (StopIteration, TypeError):
                scores.append(0.0)
        return scores

class ONNXScorer(AestheticScorer):
    """Scorer for ONNX-based models."""

    def load_model(self) -> rt.InferenceSession:
        """Loads an ONNX inference session."""
        model_path = self._download_model()
        return rt.InferenceSession(model_path, providers=['CUDAExecutionProvider' if DEVICE == 'cuda' else 'CPUExecutionProvider'])

    def _preprocess(self, img: Image.Image) -> np.ndarray:
        """Preprocesses a single image for the Anime Aesthetic model."""
        img_np = np.array(img.convert("RGB")).astype(np.float32) / 255.0
        s = 768
        h, w = img_np.shape[:2]
        if h > w:
            new_h, new_w = s, int(s * w / h)
        else:
            new_h, new_w = int(s * h / w), s
        
        resized = cv2.resize(img_np, (new_w, new_h), interpolation=cv2.INTER_AREA)
        canvas = np.zeros((s, s, 3), dtype=np.float32)
        pad_h, pad_w = (s - new_h) // 2, (s - new_w) // 2
        canvas[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = resized
        
        return np.transpose(canvas, (2, 0, 1))[np.newaxis, :]

    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        """Scores images one by one as this model doesn't support batching."""
        scores = []
        for img in image_batch:
            try:
                input_tensor = self._preprocess(img)
                pred = self.model.run(None, {"img": input_tensor})[0].item()
                scores.append(round(pred * 10.0, 4))
            except Exception:
                scores.append(0.0)
        return scores

class CLIPMLPScorer(AestheticScorer):
    """Scorer for models using a CLIP backbone and an MLP head."""

    class MLP(torch.nn.Module):
        def __init__(self, input_size: int):
            super().__init__()
            self.layers = torch.nn.Sequential(
                torch.nn.Linear(input_size, 1024),
                torch.nn.ReLU(),
                torch.nn.Dropout(0.2),
                torch.nn.Linear(1024, 128),
                torch.nn.ReLU(),
                torch.nn.Dropout(0.2),
                torch.nn.Linear(128, 64),
                torch.nn.ReLU(),
                torch.nn.Linear(64, 16),
                torch.nn.ReLU(),
                torch.nn.Linear(16, 1),
            )
        def forward(self, x):
            return self.layers(x)

    def load_model(self) -> Dict[str, Any]:
        """Loads both the CLIP model and the custom MLP head."""
        import clip # Lazy import
        
        model_path = self._download_model()
        
        mlp = self.MLP(input_size=768) # ViT-L/14 has 768 features
        state_dict = torch.load(model_path, map_location=DEVICE)
        mlp.load_state_dict(state_dict)
        mlp.to(device=DEVICE, dtype=DTYPE)
        mlp.eval()

        clip_model, preprocess = clip.load("ViT-L/14", device=DEVICE)
        
        return {"mlp": mlp, "clip": clip_model, "preprocess": preprocess}

    @torch.no_grad()
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        """Scores a batch using CLIP features and the MLP head."""
        preprocess = self.model['preprocess']
        image_tensors = torch.cat([preprocess(img).unsqueeze(0) for img in image_batch]).to(DEVICE)
        
        image_features = self.model['clip'].encode_image(image_tensors)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        
        # Pass features through MLP
        predictions = self.model['mlp'](image_features.to(DTYPE)).squeeze(-1)
        scores = predictions.float().cpu().numpy()
        
        return [round(float(s), 4) for s in scores]

# --- Model Registry ---
MODEL_REGISTRY: Dict[str, Type[AestheticScorer]] = {
    "Aesthetic Shadow V2": PipelineScorer(
        "Aesthetic Shadow V2", "shadowlilac/aesthetic-shadow-v2"
    ),
    "Waifu Scorer V2": CLIPMLPScorer(
        "Waifu Scorer V2", "skytnt/waifu-aesthetic-scorer", "model.pth"
    ),
    "Anime Scorer": ONNXScorer(
        "Anime Scorer", "skytnt/anime-aesthetic", "model.onnx"
    )
}

# In-memory cache for loaded model instances
_loaded_models_cache: Dict[str, AestheticScorer] = {}


# ==================================================================================
# 2. CORE PROCESSING LOGIC
# ==================================================================================

def get_scorers(model_names: List[str]) -> List[AestheticScorer]:
    """Retrieves and caches scorer instances based on selected names."""
    # Release models that are no longer selected
    for name, scorer in list(_loaded_models_cache.items()):
        if name not in model_names:
            scorer.release_model()
            del _loaded_models_cache[name]

    # Load newly selected models
    scorers = []
    for name in model_names:
        if name in _loaded_models_cache:
            scorers.append(_loaded_models_cache[name])
        elif name in MODEL_REGISTRY:
            scorer = MODEL_REGISTRY[name]
            _loaded_models_cache[name] = scorer
            scorers.append(scorer)
    return scorers
    
def evaluate_images(
    files: List[gr.File],
    selected_model_names: List[str],
    batch_size: int,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> pd.DataFrame:
    """
    Main function to process images, run them through selected models,
    and return results as a Pandas DataFrame.
    """
    if not files:
        gr.Warning("No images uploaded. Please upload files to evaluate.")
        return pd.DataFrame()
        
    if not selected_model_names:
        gr.Warning("No models selected. Please select at least one model.")
        return pd.DataFrame()

    try:
        image_paths = [Path(f.name) for f in files]
        all_results = []
        scorers = get_scorers(selected_model_names)
        
        # Use a single tqdm instance for progress tracking
        pbar = tqdm(total=len(image_paths), desc="Processing images")
        
        for i in range(0, len(image_paths), batch_size):
            batch_paths = image_paths[i : i + batch_size]
            
            # Load images for the current batch
            try:
                batch_images = [Image.open(p).convert("RGB") for p in batch_paths]
            except Exception as e:
                gr.Warning(f"Skipping a batch due to an error loading an image: {e}")
                pbar.update(len(batch_paths))
                continue

            # Get scores from all selected models for the batch
            batch_scores: Dict[str, List[float]] = {}
            for scorer in scorers:
                batch_scores[scorer.model_name] = scorer.score_batch(batch_images)
            
            # Collate results for the batch
            for j, path in enumerate(batch_paths):
                result_row = {"Image": Image.open(path), "Filename": path.name}
                
                scores_for_avg = []
                for scorer in scorers:
                    score = batch_scores[scorer.model_name][j]
                    result_row[scorer.model_name] = score
                    scores_for_avg.append(score)
                
                # Calculate average score
                if scores_for_avg:
                    result_row["Average Score"] = round(np.mean(scores_for_avg), 4)
                else:
                    result_row["Average Score"] = 0.0
                
                all_results.append(result_row)
            
            pbar.update(len(batch_paths))

        pbar.close()
        
        if not all_results:
            gr.Warning("Processing completed, but no results were generated.")
            return pd.DataFrame()
            
        return pd.DataFrame(all_results)
        
    except Exception as e:
        gr.Error(f"A critical error occurred: {e}")
        # Clean up in case of failure
        for scorer in _loaded_models_cache.values():
            scorer.release_model()
        _loaded_models_cache.clear()
        return pd.DataFrame()


# ==================================================================================
# 3. GRADIO USER INTERFACE
# ==================================================================================

def create_ui() -> gr.Blocks:
    """Creates and configures the Gradio web interface."""
    
    all_model_names = list(MODEL_REGISTRY.keys())
    
    # Define headers and datatypes for the results table
    dataframe_headers = ["Image", "Filename"] + all_model_names + ["Average Score"]
    dataframe_datatypes = ["image", "str"] + ["number"] * (len(all_model_names) + 1)
    
    with gr.Blocks(theme=gr.themes.Soft(), title="Image Aesthetic Scorer") as demo:
        gr.Markdown(
            """
            # πŸ–ΌοΈ Modern Image Aesthetic Scorer
            Upload your images, select the scoring models, and click 'Evaluate'.
            The results table supports **interactive sorting** (click on headers) and can be **downloaded as a CSV**.
            """
        )

        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### βš™οΈ Settings")
                input_files = gr.Files(
                    label="Upload Images",
                    file_count="multiple",
                    file_types=["image"],
                )
                
                with gr.Accordion("Advanced Configuration", open=False):
                    model_checkboxes = gr.CheckboxGroup(
                        choices=all_model_names,
                        value=all_model_names,
                        label="Scoring Models",
                        info="Choose which models to use for evaluation.",
                    )
                    batch_size_slider = gr.Slider(
                        minimum=1,
                        maximum=64,
                        value=8,
                        step=1,
                        label="Batch Size",
                        info="Adjust based on your VRAM. Higher is faster.",
                    )

                with gr.Row():
                    process_button = gr.Button("πŸš€ Evaluate Images", variant="primary")
                    clear_button = gr.Button("🧹 Clear All")
            
            with gr.Column(scale=3):
                gr.Markdown("### πŸ“Š Results")
                results_dataframe = gr.DataFrame(
                    headers=dataframe_headers,
                    datatype=dataframe_datatypes,
                    label="Evaluation Scores",
                    interactive=True,
                    # Enable the download button directly on the component
                )
                # This is a cleaner way to show the download button
                results_dataframe.style(height=800, show_download_button=True)


        # --- Event Handlers ---
        process_button.click(
            fn=evaluate_images,
            inputs=[input_files, model_checkboxes, batch_size_slider],
            outputs=[results_dataframe],
            concurrency_limit=1 # Only one evaluation at a time
        )

        def clear_outputs():
            # Release all models from memory when clearing
            for scorer in _loaded_models_cache.values():
                scorer.release_model()
            _loaded_models_cache.clear()
            gr.Info("Cleared results and released models from memory.")
            # Return an empty DataFrame to clear the table
            return pd.DataFrame()

        clear_button.click(
            fn=clear_outputs,
            inputs=[],
            outputs=[results_dataframe],
        )
        
    return demo

# ==================================================================================
# 4. APPLICATION ENTRY POINT
# ==================================================================================

if __name__ == "__main__":
    # Ensure cache directory exists
    os.makedirs(CACHE_DIR, exist_ok=True)
    
    app = create_ui()
    app.queue().launch(share=False)