img-eval-test / app.py
VOIDER's picture
Update app.py
ffdea99 verified
raw
history blame
21.2 kB
import gradio as gr
from PIL import Image, PngImagePlugin
import io
import os
import pandas as pd
import torch
from transformers import pipeline as transformers_pipeline , AutoModelForImageClassification, CLIPImageProcessor # Изменено для ImageReward
# from torchvision import transforms
from torchmetrics.functional.multimodal import clip_score
import open_clip # Изменено для open_clip
import re
import matplotlib.pyplot as plt
import json
from collections import defaultdict
import numpy as np
import logging
# --- ONNX Related Imports and Setup ---
try:
import onnxruntime
except ImportError:
print("onnxruntime not found. Please ensure it's in requirements.txt")
onnxruntime = None
from huggingface_hub import hf_hub_download
try:
from imgutils.data import rgb_encode
IMGUTILS_AVAILABLE = True
print("imgutils.data.rgb_encode found and will be used.")
except ImportError:
print("imgutils.data.rgb_encode not found. Using a basic fallback for preprocessing deepghs models.")
IMGUTILS_AVAILABLE = False
def rgb_encode(image: Image.Image, order_='CHW'): # Простая заглушка
img_arr = np.array(image.convert("RGB")) # Убедимся что RGB
if order_ == 'CHW':
img_arr = np.transpose(img_arr, (2, 0, 1))
# Эта заглушка возвращает uint8 0-255, как и ожидается далее
return img_arr.astype(np.uint8)
# --- Модель Конфигурация и Загрузка ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
ONNX_DEVICE = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider"
print(f"Using ONNX device: {ONNX_DEVICE}")
# --- Helper for ONNX models (deepghs) ---
@torch.no_grad()
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5):
image = image.resize(size, Image.Resampling.BILINEAR)
data_uint8 = rgb_encode(image, order_='CHW') # (C, H, W), uint8, 0-255
data_float01 = data_uint8.astype(np.float32) / 255.0
mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1))
std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1))
normalized_data = (data_float01 - mean) / std
return normalized_data[None, ...].astype(np.float32)
onnx_sessions_cache = {}
def get_onnx_session_and_meta(repo_id, model_subfolder):
cache_key = f"{repo_id}/{model_subfolder}"
if cache_key in onnx_sessions_cache:
return onnx_sessions_cache[cache_key]
if not onnxruntime:
# raise ImportError("ONNX Runtime is not available.") # Не будем падать, просто вернем None
print("ONNX Runtime is not available for get_onnx_session_and_meta")
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
try:
model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx")
meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json")
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if ONNX_DEVICE == "CPUExecutionProvider" and hasattr(os, 'cpu_count'): # hasattr для безопасности
options.intra_op_num_threads = os.cpu_count()
session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_DEVICE])
with open(meta_path, 'r') as f:
meta = json.load(f)
labels = meta.get('labels', [])
onnx_sessions_cache[cache_key] = (session, labels, meta)
return session, labels, meta
except Exception as e:
print(f"Error loading ONNX model {repo_id}/{model_subfolder}: {e}")
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
# 1. ImageReward
try:
# THUDM/ImageReward использует CLIPImageProcessor
reward_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") # Типичный процессор для таких моделей
reward_model = AutoModelForImageClassification.from_pretrained("THUDM/ImageReward").to(DEVICE)
reward_model.eval()
print("THUDM/ImageReward loaded successfully.")
except Exception as e:
print(f"Error loading THUDM/ImageReward: {e}")
reward_processor, reward_model = None, None
# 2. Anime Aesthetic (deepghs ONNX)
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic"
ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x"
ANIME_AESTHETIC_IMG_SIZE = (448, 448)
ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0}
# 3. MANIQA (Technical Quality) - ВРЕМЕННО ОТКЛЮЧЕНО
maniqa_pipe = None
print("MANIQA (honklers/maniqa-nr) is temporarily disabled due to loading issues. Will look for alternatives.")
# try:
# maniqa_pipe = transformers_pipeline("image-classification", model="honklers/maniqa-nr", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
# except Exception as e:
# print(f"Error loading honklers/maniqa-nr: {e}")
# maniqa_pipe = None
# 4. CLIP Score (laion/CLIP-ViT-L-14-laion2B-s32B-b82K) - open_clip
try:
clip_model_name = 'ViT-L-14'
# Для open_clip, `pretrained` это обычно имя датасета или комбинация
# `laion2b_s32b_b82k` - это один из весов для ViT-L-14
clip_model_instance, clip_preprocess_train, clip_preprocess_val = open_clip.create_model_and_transforms(
clip_model_name,
pretrained='laion2b_s32b_b82k', # Это правильное имя претрейна для open_clip
device=DEVICE
)
clip_preprocess = clip_preprocess_val # Используем preprocess для инференса
clip_tokenizer = open_clip.get_tokenizer(clip_model_name)
clip_model_instance.eval()
print(f"CLIP model {clip_model_name} (laion2b_s32b_b82k) loaded successfully.")
except Exception as e:
print(f"Error loading CLIP model {clip_model_name} (laion2b_s32b_b82k): {e}")
clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None
# 5. AI Detectors
# Organika/sdxl-detector - Transformers pipeline
try:
sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
print("Organika/sdxl-detector loaded successfully.")
except Exception as e:
print(f"Error loading Organika/sdxl-detector: {e}")
sdxl_detector_pipe = None
# deepghs/anime_ai_check - ONNX
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check"
ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce"
ANIME_AI_CHECK_IMG_SIZE = (384, 384)
# --- Функции извлечения метаданных (без изменений) ---
def extract_sd_parameters(image_pil):
if image_pil is None: return "", "N/A", "N/A", "N/A", {}
parameters_str = image_pil.info.get("parameters", "")
if not parameters_str: return "", "N/A", "N/A", "N/A", {}
prompt, negative_prompt, model_name, model_hash, other_params_dict = "", "N/A", "N/A", "N/A", {}
try:
neg_prompt_index = parameters_str.find("Negative prompt:")
steps_meta_index = parameters_str.find("Steps:")
if neg_prompt_index != -1:
prompt = parameters_str[:neg_prompt_index].strip()
params_part_start_index = steps_meta_index if steps_meta_index > neg_prompt_index else -1
if params_part_start_index != -1:
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):params_part_start_index].strip()
params_part = parameters_str[params_part_start_index:]
else:
end_of_neg = parameters_str.find("\n", neg_prompt_index + len("Negative prompt:"))
if end_of_neg == -1: end_of_neg = len(parameters_str)
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):end_of_neg].strip()
params_part = parameters_str[end_of_neg:].strip() if end_of_neg < len(parameters_str) else ""
elif steps_meta_index != -1:
prompt = parameters_str[:steps_meta_index].strip()
params_part = parameters_str[steps_meta_index:]
else:
prompt = parameters_str.strip()
params_part = ""
if params_part:
params_list = [p.strip() for p in params_part.split(",")]
temp_other_params = {}
for param_val_str in params_list:
parts = param_val_str.split(':', 1)
if len(parts) == 2:
key, value = parts[0].strip(), parts[1].strip()
temp_other_params[key] = value
if key == "Model": model_name = value
elif key == "Model hash": model_hash = value
for k,v in temp_other_params.items():
if k not in ["Model", "Model hash"]: other_params_dict[k] = v
if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}"
# Fallback for model name if only Checkpoint is present (e.g. from ComfyUI)
if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"]
if model_name == "N/A" and "model" in other_params_dict: model_name = other_params_dict["model"] # Another common key
except Exception as e:
print(f"Error parsing metadata: {e}")
return prompt, negative_prompt, model_name, model_hash, other_params_dict
# --- Функции оценки ---
@torch.no_grad()
def get_image_reward(image_pil):
if not reward_model or not reward_processor: return "N/A"
try:
# ImageReward ожидает специфическую предобработку, часто как у CLIP
inputs = reward_processor(images=image_pil, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
outputs = reward_model(**inputs)
return round(outputs.logits.item(), 4)
except Exception as e:
print(f"Error in ImageReward: {e}")
return "Error"
def get_anime_aesthetic_score_deepghs(image_pil):
session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER)
if not session or not labels: return "N/A"
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AESTHETIC_IMG_SIZE)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]
exp_scores = np.exp(scores - np.max(scores))
probabilities = exp_scores / np.sum(exp_scores)
weighted_score = sum(probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS.get(label, 0.0) for i, label in enumerate(labels))
return round(weighted_score, 4)
except Exception as e:
print(f"Error in Anime Aesthetic (ONNX): {e}")
return "Error"
@torch.no_grad()
def get_maniqa_score(image_pil): # Временно возвращает N/A
# if not maniqa_pipe: return "N/A"
# try:
# result = maniqa_pipe(image_pil.copy())
# score = 0.0
# for item in result:
# if item['label'].lower() == 'good quality': score = item['score']; break
# return round(score, 4)
# except Exception as e:
# print(f"Error in MANIQA: {e}")
# return "Error"
return "N/A (Disabled)"
@torch.no_grad()
def calculate_clip_score_value(image_pil, prompt_text):
if not clip_model_instance or not clip_preprocess or not clip_tokenizer or not prompt_text or prompt_text == "N/A":
return "N/A"
try:
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
# Убедимся, что prompt_text это строка, а не None или что-то еще
text_for_tokenizer = str(prompt_text) if prompt_text else ""
if not text_for_tokenizer: return "N/A (Empty Prompt)"
text_input = clip_tokenizer([text_for_tokenizer]).to(DEVICE)
image_features = clip_model_instance.encode_image(image_input)
text_features = clip_model_instance.encode_text(text_input)
image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
score = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0
return round(score, 2)
except Exception as e:
print(f"Error in CLIP Score: {e}")
return "Error"
@torch.no_grad()
def get_sdxl_detection_score(image_pil):
if not sdxl_detector_pipe: return "N/A"
try:
result = sdxl_detector_pipe(image_pil.copy())
ai_score = 0.0
for item in result:
if item['label'].lower() == 'artificial': ai_score = item['score']; break
return round(ai_score, 4)
except Exception as e:
print(f"Error in SDXL Detector: {e}")
return "Error"
def get_anime_ai_check_score_deepghs(image_pil):
session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER)
if not session or not labels: return "N/A"
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AI_CHECK_IMG_SIZE)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]
exp_scores = np.exp(scores - np.max(scores))
probabilities = exp_scores / np.sum(exp_scores)
ai_prob = 0.0
for i, label in enumerate(labels):
if label.lower() == 'ai': ai_prob = probabilities[i]; break
return round(ai_prob, 4)
except Exception as e:
print(f"Error in Anime AI Check (ONNX): {e}")
return "Error"
# --- Основная функция обработки ---
def process_images(files, progress=gr.Progress(track_tqdm=True)):
if not files:
return pd.DataFrame(), None, None, None, None, "Please upload some images."
all_results = []
for i, file_obj in enumerate(files):
filename = "Unknown File"
try:
# file_obj.name может быть абсолютным путем на сервере
filename = os.path.basename(getattr(file_obj, 'name', f"file_{i}"))
img = Image.open(getattr(file_obj, 'name', str(file_obj)))
if img.mode != "RGB": img = img.convert("RGB")
prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img)
reward = get_image_reward(img)
anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img)
maniqa = get_maniqa_score(img) # Будет N/A (Disabled)
clip_val = calculate_clip_score_value(img, prompt)
sdxl_detect = get_sdxl_detection_score(img)
anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img)
all_results.append({
"Filename": filename, "Prompt": prompt if prompt else "N/A", "Model Name": model_n, "Model Hash": model_h,
"ImageReward": reward, "AnimeAesthetic_dg": anime_aes_deepghs, "MANIQA_TQ": maniqa,
"CLIPScore": clip_val, "SDXL_Detector_AI_Prob": sdxl_detect, "AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs,
})
except Exception as e:
print(f"CRITICAL: Failed to process {filename}: {e}")
all_results.append({
"Filename": filename, "Prompt": "Error", "Model Name": "Error", "Model Hash": "Error",
"ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error",
"CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error"
})
df = pd.DataFrame(all_results)
plot_model_avg_scores_buffer, plot_prompt_clip_scores_buffer = None, None
csv_buffer_val, json_buffer_val = "", ""
if not df.empty:
numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"]
for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce')
# График 1
df_model_plot = df[(df["Model Name"] != "N/A") & (df["Model Name"].notna())]
if not df_model_plot.empty and df_model_plot["Model Name"].nunique() > 0:
try:
model_avg_scores = df_model_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all')
if not model_avg_scores.empty:
fig1, ax1 = plt.subplots(figsize=(12, 7)); model_avg_scores.plot(kind="bar", ax=ax1)
ax1.set_title("Average Scores per Model"); ax1.set_ylabel("Average Score")
ax1.tick_params(axis='x', rotation=45, labelsize=8); plt.tight_layout()
plot_model_avg_scores_buffer = io.BytesIO(); fig1.savefig(plot_model_avg_scores_buffer, format="png"); plot_model_avg_scores_buffer.seek(0); plt.close(fig1)
except Exception as e: print(f"Error generating model average scores plot: {e}")
# График 2
df_prompt_plot = df[(df["Prompt"] != "N/A") & (df["Prompt"].notna()) & (df["CLIPScore"].notna())]
if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0 :
try:
df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (str(x)[:30] + '...') if len(str(x)) > 33 else str(x))
prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False)
if not prompt_clip_scores.empty and len(prompt_clip_scores) >= 1 : # Изменено на >=1 для одиночных промптов
fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15))))
prompt_clip_scores.head(20).plot(kind="barh", ax=ax2)
ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)"); ax2.set_xlabel("Average CLIPScore")
plt.tight_layout(); plot_prompt_clip_scores_buffer = io.BytesIO(); fig2.savefig(plot_prompt_clip_scores_buffer, format="png"); plot_prompt_clip_scores_buffer.seek(0); plt.close(fig2)
except Exception as e: print(f"Error generating prompt CLIP scores plot: {e}")
csv_b = io.StringIO(); df.to_csv(csv_b, index=False); csv_buffer_val = csv_b.getvalue()
json_b = io.StringIO(); df.to_json(json_b, orient='records', indent=4); json_buffer_val = json_b.getvalue()
return (
df,
gr.Image(value=plot_model_avg_scores_buffer, type="pil", visible=plot_model_avg_scores_buffer is not None),
gr.Image(value=plot_prompt_clip_scores_buffer, type="pil", visible=plot_prompt_clip_scores_buffer is not None),
gr.File(value=csv_buffer_val or None, label="Download CSV Results", visible=bool(csv_buffer_val), file_name="evaluation_results.csv"),
gr.File(value=json_buffer_val or None, label="Download JSON Results", visible=bool(json_buffer_val), file_name="evaluation_results.json"),
f"Processed {len(all_results)} images.",
)
# --- Интерфейс Gradio ---
with gr.Blocks(css="footer {display: none !important}") as demo:
gr.Markdown("# AI Image Model Evaluation Tool")
gr.Markdown("Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them...")
with gr.Row(): image_uploader = gr.Files(label="Upload Images (PNG)", file_count="multiple", file_types=["image"])
process_button = gr.Button("Evaluate Images", variant="primary")
status_textbox = gr.Textbox(label="Status", interactive=False)
gr.Markdown("## Evaluation Results Table")
results_table = gr.DataFrame(headers=[ # Убран max_rows
"Filename", "Prompt", "Model Name", "Model Hash", "ImageReward", "AnimeAesthetic_dg",
"MANIQA_TQ", "CLIPScore", "SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob"
], wrap=True)
with gr.Row():
download_csv_button = gr.File(label="Download CSV Results", interactive=False)
download_json_button = gr.File(label="Download JSON Results", interactive=False)
gr.Markdown("## Visualizations")
with gr.Row():
plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False)
plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False)
process_button.click(fn=process_images, inputs=[image_uploader], outputs=[
results_table, plot_output_model_avg, plot_output_prompt_clip,
download_csv_button, download_json_button, status_textbox
])
gr.Markdown("""**Metric Explanations:** ... (без изменений)""")
if __name__ == "__main__":
demo.launch(debug=True)