img-eval-test / app.py
VOIDER's picture
Update app.py
7f7c3a3 verified
import gradio as gr
from PIL import Image, PngImagePlugin # Убедимся, что Image из PIL импортирован
import io
import os
import pandas as pd
import torch
from transformers import pipeline as transformers_pipeline , CLIPImageProcessor
import open_clip
import re
import matplotlib.pyplot as plt
import json
from collections import defaultdict
import numpy as np
import logging
import time
import tempfile
# --- ONNX Related Imports and Setup ---
try:
import onnxruntime
except ImportError:
print("WARNING: onnxruntime not found. ONNX models will not be available.")
onnxruntime = None
from huggingface_hub import hf_hub_download
try:
from imgutils.data import rgb_encode
IMGUTILS_AVAILABLE = True
print("INFO: imgutils.data.rgb_encode found and will be used for deepghs models.")
except ImportError:
print("WARNING: imgutils.data.rgb_encode not found. Using a basic fallback for preprocessing deepghs models.")
IMGUTILS_AVAILABLE = False
def rgb_encode(image: Image.Image, order_='CHW'):
img_arr = np.array(image.convert("RGB"))
if order_ == 'CHW':
img_arr = np.transpose(img_arr, (2, 0, 1))
return img_arr.astype(np.uint8)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: PyTorch Device: {DEVICE}")
ONNX_EXECUTION_PROVIDER = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider"
if onnxruntime: print(f"INFO: ONNX Execution Provider: {ONNX_EXECUTION_PROVIDER}")
else: print("INFO: ONNX Runtime not available, ONNX models will be skipped.")
@torch.no_grad()
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5):
image = image.resize(size, Image.Resampling.BILINEAR)
data_uint8 = rgb_encode(image, order_='CHW')
data_float01 = data_uint8.astype(np.float32) / 255.0
mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1))
std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1))
normalized_data = (data_float01 - mean) / std
return normalized_data[None, ...].astype(np.float32)
onnx_sessions_cache = {}
def get_onnx_session_and_meta(repo_id, model_subfolder, current_log_list):
cache_key = f"{repo_id}/{model_subfolder}"
if cache_key in onnx_sessions_cache: return onnx_sessions_cache[cache_key]
if not onnxruntime:
msg = f"ERROR: ONNX Runtime not available for get_onnx_session_and_meta ({cache_key}). Skipping."
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
try:
msg = f"INFO: Loading ONNX model {repo_id}/{model_subfolder}..."
print(msg); current_log_list.append(msg)
model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx")
meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json")
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if ONNX_EXECUTION_PROVIDER == "CPUExecutionProvider" and hasattr(os, 'cpu_count'):
options.intra_op_num_threads = os.cpu_count()
session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_EXECUTION_PROVIDER])
with open(meta_path, 'r') as f: meta = json.load(f)
labels = meta.get('labels', [])
msg = f"INFO: ONNX model {cache_key} loaded successfully with provider {ONNX_EXECUTION_PROVIDER}."
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (session, labels, meta)
return session, labels, meta
except Exception as e:
msg = f"ERROR: Failed to load ONNX model {cache_key}: {e}"
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
reward_processor, reward_model = None, None
print("INFO: THUDM/ImageReward is temporarily disabled due to loading issues.")
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic"; ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x"
ANIME_AESTHETIC_IMG_SIZE = (448, 448); ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0}
print("INFO: MANIQA (honklers/maniqa-nr) is currently disabled.")
clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None
try:
clip_model_name = 'ViT-L-14'; print(f"INFO: Loading CLIP model {clip_model_name} (laion2b_s32b_b82k)...")
clip_model_instance, _, clip_preprocess_val = open_clip.create_model_and_transforms(clip_model_name, pretrained='laion2b_s32b_b82k', device=DEVICE)
clip_preprocess = clip_preprocess_val; clip_tokenizer = open_clip.get_tokenizer(clip_model_name)
clip_model_instance.eval(); print(f"INFO: CLIP model {clip_model_name} (laion2b_s32b_b82k) loaded successfully.")
except Exception as e: print(f"ERROR: Failed to load CLIP model {clip_model_name} (laion2b_s32b_b82k): {e}")
sdxl_detector_pipe = None
try:
print("INFO: Loading Organika/sdxl-detector model...")
sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
print("INFO: Organika/sdxl-detector loaded successfully.")
except Exception as e: print(f"ERROR: Failed to load Organika/sdxl-detector: {e}")
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check"; ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce"
ANIME_AI_CHECK_IMG_SIZE = (384, 384)
def extract_sd_parameters(image_pil, filename_for_log, current_log_list):
if image_pil is None: return "", "N/A", "N/A", "N/A", {}
parameters_str = image_pil.info.get("parameters", "")
if not parameters_str:
current_log_list.append(f"DEBUG [{filename_for_log}]: No metadata found in image.")
return "", "N/A", "N/A", "N/A", {}
current_log_list.append(f"DEBUG [{filename_for_log}]: Raw metadata: {parameters_str[:100]}...")
prompt, negative_prompt, model_name, model_hash, other_params_dict = "", "N/A", "N/A", "N/A", {}
try:
neg_prompt_index = parameters_str.find("Negative prompt:")
steps_meta_index = parameters_str.find("Steps:")
if neg_prompt_index != -1:
prompt = parameters_str[:neg_prompt_index].strip()
params_part_start_index = steps_meta_index if steps_meta_index != -1 and steps_meta_index > neg_prompt_index else -1
if params_part_start_index != -1:
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):params_part_start_index].strip()
params_part = parameters_str[params_part_start_index:]
else:
end_of_neg = parameters_str.find("\n", neg_prompt_index + len("Negative prompt:"))
if end_of_neg == -1: end_of_neg = len(parameters_str)
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):end_of_neg].strip()
params_part = parameters_str[end_of_neg:].strip() if end_of_neg < len(parameters_str) else ""
elif steps_meta_index != -1:
prompt = parameters_str[:steps_meta_index].strip(); params_part = parameters_str[steps_meta_index:]
else:
prompt = parameters_str.strip(); params_part = ""
if params_part:
params_list = [p.strip() for p in params_part.split(",")]
temp_other_params = {}
for param_val_str in params_list:
parts = param_val_str.split(':', 1)
if len(parts) == 2:
key, value = parts[0].strip(), parts[1].strip()
temp_other_params[key] = value
if key.lower() == "model": model_name = value
elif key.lower() == "model hash": model_hash = value
for k,v in temp_other_params.items():
if k.lower() not in ["model", "model hash"]: other_params_dict[k] = v
if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}"
if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"]
if model_name == "N/A" and "model" in other_params_dict: model_name = other_params_dict["model"]
current_log_list.append(f"DEBUG [{filename_for_log}]: Parsed Prompt: {prompt[:50]}... | Model: {model_name}")
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: Failed to parse metadata: {e}")
return prompt, negative_prompt, model_name, model_hash, other_params_dict
@torch.no_grad()
def get_image_reward(image_pil, filename_for_log, current_log_list): return "N/A (Disabled)"
def get_anime_aesthetic_score_deepghs(image_pil, filename_for_log, current_log_list):
session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER, current_log_list)
if not session or not labels: current_log_list.append(f"INFO [{filename_for_log}]: AnimeAesthetic ONNX model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting AnimeAesthetic (ONNX) score...")
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AESTHETIC_IMG_SIZE)
input_name = session.get_inputs()[0].name; output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]; exp_scores = np.exp(scores - np.max(scores)); probabilities = exp_scores / np.sum(exp_scores)
weighted_score = sum(probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS.get(label, 0.0) for i, label in enumerate(labels))
score = round(weighted_score, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: AnimeAesthetic (ONNX) score: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: AnimeAesthetic (ONNX) scoring failed: {e}"); return "Error"
@torch.no_grad()
def get_maniqa_score(image_pil, filename_for_log, current_log_list):
current_log_list.append(f"INFO [{filename_for_log}]: MANIQA is disabled."); return "N/A (Disabled)"
@torch.no_grad()
def calculate_clip_score_value(image_pil, prompt_text, filename_for_log, current_log_list):
if not clip_model_instance or not clip_preprocess or not clip_tokenizer: current_log_list.append(f"INFO [{filename_for_log}]: CLIP model not loaded, skipping CLIPScore."); return "N/A"
if not prompt_text or prompt_text == "N/A": current_log_list.append(f"INFO [{filename_for_log}]: Empty prompt, skipping CLIPScore."); return "N/A (Empty Prompt)"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting CLIPScore (PyTorch Device: {DEVICE})...")
try:
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
text_for_tokenizer = str(prompt_text); text_input = clip_tokenizer([text_for_tokenizer]).to(DEVICE)
image_features = clip_model_instance.encode_image(image_input); text_features = clip_model_instance.encode_text(text_input)
image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
score_val = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0
score = round(score_val, 2); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: CLIPScore: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: CLIPScore calculation failed: {e}"); return "Error"
@torch.no_grad()
def get_sdxl_detection_score(image_pil, filename_for_log, current_log_list):
if not sdxl_detector_pipe: current_log_list.append(f"INFO [{filename_for_log}]: SDXL_Detector model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting SDXL_Detector score (Device: {sdxl_detector_pipe.device})...")
try:
result = sdxl_detector_pipe(image_pil.copy()); ai_score_val = 0.0
for item in result:
if item['label'].lower() == 'artificial': ai_score_val = item['score']; break
score = round(ai_score_val, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: SDXL_Detector AI Prob: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: SDXL_Detector scoring failed: {e}"); return "Error"
def get_anime_ai_check_score_deepghs(image_pil, filename_for_log, current_log_list):
session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER, current_log_list)
if not session or not labels: current_log_list.append(f"INFO [{filename_for_log}]: AnimeAI_Check ONNX model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting AnimeAI_Check (ONNX) score...")
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AI_CHECK_IMG_SIZE)
input_name = session.get_inputs()[0].name; output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]; exp_scores = np.exp(scores - np.max(scores)); probabilities = exp_scores / np.sum(exp_scores)
ai_prob_val = 0.0
for i, label in enumerate(labels):
if label.lower() == 'ai': ai_prob_val = probabilities[i]; break
score = round(ai_prob_val, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: AnimeAI_Check (ONNX) AI Prob: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: AnimeAI_Check (ONNX) scoring failed: {e}"); return "Error"
def process_images_generator(files, progress=gr.Progress(track_tqdm=True)):
if not files:
yield (pd.DataFrame(),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Please upload some images.", "No files to process.")
return
all_results = []
log_accumulator = [f"INFO: Starting processing for {len(files)} images..."]
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Processing...", "\n".join(log_accumulator))
for i, file_obj in enumerate(files):
filename_for_log = "Unknown File"; current_img_total_time_start = time.time()
try:
filename_for_log = os.path.basename(getattr(file_obj, 'name', f"file_{i}_{int(time.time())}"))
log_accumulator.append(f"--- Processing image {i+1}/{len(files)}: {filename_for_log} ---")
progress( (i + 0.1) / len(files), desc=f"Img {i+1}/{len(files)}: Loading {filename_for_log}")
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Loading image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
img = Image.open(getattr(file_obj, 'name', str(file_obj)))
if img.mode != "RGB": img = img.convert("RGB")
progress( (i + 0.3) / len(files), desc=f"Img {i+1}/{len(files)}: Scoring {filename_for_log}")
prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img, filename_for_log, log_accumulator)
reward = get_image_reward(img, filename_for_log, log_accumulator)
anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img, filename_for_log, log_accumulator)
maniqa = get_maniqa_score(img, filename_for_log, log_accumulator)
clip_val = calculate_clip_score_value(img, prompt, filename_for_log, log_accumulator)
sdxl_detect = get_sdxl_detection_score(img, filename_for_log, log_accumulator)
anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img, filename_for_log, log_accumulator)
current_img_total_time_end = time.time()
log_accumulator.append(f"INFO [{filename_for_log}]: Finished all scores (total for image: {current_img_total_time_end - current_img_total_time_start:.2f}s)")
all_results.append({
"Filename": filename_for_log, "Prompt": prompt if prompt else "N/A", "Model Name": model_n, "Model Hash": model_h,
"ImageReward": reward, "AnimeAesthetic_dg": anime_aes_deepghs, "MANIQA_TQ": maniqa,
"CLIPScore": clip_val, "SDXL_Detector_AI_Prob": sdxl_detect, "AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs,
})
df_so_far = pd.DataFrame(all_results)
progress( (i + 1.0) / len(files), desc=f"Img {i+1}/{len(files)}: Done {filename_for_log}")
yield (df_so_far,
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Processed image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
except Exception as e:
log_accumulator.append(f"CRITICAL ERROR processing {filename_for_log}: {e}")
print(f"CRITICAL ERROR processing {filename_for_log}: {e}")
all_results.append({
"Filename": filename_for_log, "Prompt": "Critical Error", "Model Name": "Error", "Model Hash": "Error",
"ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error",
"CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error"
})
df_so_far = pd.DataFrame(all_results)
yield (df_so_far,
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Error on image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
log_accumulator.append("--- Generating final plots and download files ---")
progress(1.0, desc="Generating final plots...")
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Generating final plots...", "\n".join(log_accumulator))
df = pd.DataFrame(all_results)
plot_model_avg_scores_buffer, plot_prompt_clip_scores_buffer = None, None
csv_file_path_out, json_file_path_out = None, None
if not df.empty:
numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"]
for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce')
df_model_plot = df[(df["Model Name"] != "N/A") & (df["Model Name"].notna())]
if not df_model_plot.empty and df_model_plot["Model Name"].nunique() > 0:
try:
model_avg_scores = df_model_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all')
if not model_avg_scores.empty:
fig1, ax1 = plt.subplots(figsize=(12, 7)); model_avg_scores.plot(kind="bar", ax=ax1)
ax1.set_title("Average Scores per Model"); ax1.set_ylabel("Average Score")
ax1.tick_params(axis='x', rotation=45, labelsize=8); plt.tight_layout()
plot_model_avg_scores_buffer = io.BytesIO(); fig1.savefig(plot_model_avg_scores_buffer, format="png"); plot_model_avg_scores_buffer.seek(0); plt.close(fig1)
log_accumulator.append("INFO: Model average scores plot generated.")
except Exception as e: log_accumulator.append(f"ERROR: Failed to generate model average scores plot: {e}")
df_prompt_plot = df[(df["Prompt"] != "N/A") & (df["Prompt"].notna()) & (df["CLIPScore"].notna())]
if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0 :
try:
df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (str(x)[:30] + '...') if len(str(x)) > 33 else str(x))
prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False)
if not prompt_clip_scores.empty and len(prompt_clip_scores) >= 1 :
fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15))))
prompt_clip_scores.head(20).plot(kind="barh", ax=ax2)
ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)"); ax2.set_xlabel("Average CLIPScore")
plt.tight_layout(); plot_prompt_clip_scores_buffer = io.BytesIO(); fig2.savefig(plot_prompt_clip_scores_buffer, format="png"); plot_prompt_clip_scores_buffer.seek(0); plt.close(fig2)
log_accumulator.append("INFO: Prompt CLIP scores plot generated.")
except Exception as e: log_accumulator.append(f"ERROR: Failed to generate prompt CLIP scores plot: {e}")
try:
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv", encoding='utf-8') as tmp_csv:
df.to_csv(tmp_csv, index=False); csv_file_path_out = tmp_csv.name
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json", encoding='utf-8') as tmp_json:
df.to_json(tmp_json, orient='records', indent=4); json_file_path_out = tmp_json.name
log_accumulator.append("INFO: CSV and JSON data prepared for download.")
except Exception as e: log_accumulator.append(f"ERROR preparing download files: {e}")
final_status = f"Finished processing {len(all_results)} images."
log_accumulator.append(final_status)
# Преобразуем BytesIO в PIL.Image перед передачей в gr.Image
pil_plot_model_avg = Image.open(plot_model_avg_scores_buffer) if plot_model_avg_scores_buffer and plot_model_avg_scores_buffer.getbuffer().nbytes > 0 else None
pil_plot_prompt_clip = Image.open(plot_prompt_clip_scores_buffer) if plot_prompt_clip_scores_buffer and plot_prompt_clip_scores_buffer.getbuffer().nbytes > 0 else None
if pil_plot_model_avg or pil_plot_prompt_clip:
log_accumulator.append("INFO: Plots converted to PIL Images for display.")
else:
log_accumulator.append("INFO: No plots were generated or plots are empty.")
yield (
df,
gr.Image(value=pil_plot_model_avg, visible=pil_plot_model_avg is not None),
gr.Image(value=pil_plot_prompt_clip, visible=pil_plot_prompt_clip is not None),
gr.File(value=csv_file_path_out, visible=csv_file_path_out is not None),
gr.File(value=json_file_path_out, visible=json_file_path_out is not None),
final_status,
"\n".join(log_accumulator)
)
with gr.Blocks(css="footer {display: none !important}") as demo:
gr.Markdown("# AI Image Model Evaluation Tool")
gr.Markdown("Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them...")
with gr.Row(): image_uploader = gr.Files(label="Upload Images (PNG)", file_count="multiple", file_types=["image"])
process_button = gr.Button("Evaluate Images", variant="primary")
status_textbox = gr.Textbox(label="Overall Status", interactive=False)
log_output_textbox = gr.Textbox(label="Detailed Logs", lines=15, interactive=False, autoscroll=True)
gr.Markdown("## Evaluation Results Table")
results_table = gr.DataFrame(headers=[
"Filename", "Prompt", "Model Name", "Model Hash", "ImageReward", "AnimeAesthetic_dg",
"MANIQA_TQ", "CLIPScore", "SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob"
], wrap=True)
with gr.Row():
download_csv_button = gr.File(label="Download CSV Results", interactive=False)
download_json_button = gr.File(label="Download JSON Results", interactive=False)
gr.Markdown("## Visualizations")
with gr.Row():
plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False)
plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False)
process_button.click(
fn=process_images_generator, inputs=[image_uploader],
outputs=[results_table, plot_output_model_avg, plot_output_prompt_clip,
download_csv_button, download_json_button, status_textbox, log_output_textbox]
)
gr.Markdown("""**Metric Explanations:** ... (без изменений)""")
if __name__ == "__main__":
print("--- Initializing models, please wait... ---")
initial_dummy_logs = []
if onnxruntime:
get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER, initial_dummy_logs)
get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER, initial_dummy_logs)
if initial_dummy_logs:
print("--- Initial ONNX loading attempts log: ---")
for log_line in initial_dummy_logs: print(log_line)
print("-----------------------------------------")
print("--- Model initialization attempt complete. Launching Gradio. ---")
demo.queue().launch(debug=True)