AvatarVideoGenerator / Wav2Lip /video_generator.py
Vahe's picture
ffmpeg video creation code changed
276cc19
from pathlib import Path
import os
import numpy as np
import cv2
from Wav2Lip import audio
import subprocess
from tqdm import tqdm
from Wav2Lip import face_detection
from Wav2Lip.models import Wav2Lip
import platform
# import tensorflow as tf
import torch
# import face_alignment
# import streamlit as st
import ffmpeg
# checkpoint_path = 'wav2lip_model/wav2lip_gan.tflite'
checkpoint_path = 'wav2lip_model/wav2lip_gan.pth'
outfile = 'generated_video.mp4'
static = False
fps = 25.
pads = [0, 10, 0, 0]
face_det_batch_size = 16
wav2lip_batch_size = 128
resize_factor = 1
crop = [0, -1, 0, -1]
box = [-1, -1, -1, -1]
rotate = False
nosmooth = False
img_size = 96
device = 'cpu'
mel_step_size = 16
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
# detector = face_detection.build_detector("DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
# detector = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False, device=device)
batch_size = face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
# predictions.extend(detector.batched_detect(np.array(images[i:i + batch_size])))
# predictions.extend(detector.get_landmarks_from_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if box[0] == -1:
if not static:
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = face_detect([frames[0]])
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = box
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if static else i%len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def get_full_frames(face, fps=fps):
if not os.path.isfile(face):
raise ValueError('face argument must be a valid path to video/image file')
elif face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(face)]
fps = fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
if rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("Number of frames available for inference: "+str(len(full_frames)))
return full_frames
def get_mel_chunks(voice_audio):
if not voice_audio.endswith('.wav'):
print('Extracting raw audio...')
# st.write(voice_audio)
command = 'ffmpeg -y -i {} -strict -2 {}'.format(voice_audio, 'temp/temp.wav')
subprocess.call(command, shell=True)
voice_audio = 'temp/temp.wav'
wav = audio.load_wav(voice_audio, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
mel_idx_multiplier = 80./fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
return mel_chunks
def create_video(voice_audio, face):
global static
mel_chunks = get_mel_chunks(voice_audio)
full_frames = get_full_frames(face)
full_frames = full_frames[:len(mel_chunks)]
batch_size = wav2lip_batch_size
if face and face.split('.')[1] in ['jpg', 'png', 'jpeg']:
static = True
gen = datagen(full_frames.copy(), mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
if i == 0:
model = load_model(checkpoint_path)
print ("Model loaded")
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
# command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(voice_audio, 'temp/result.avi', outfile)
# subprocess.call(command, shell=platform.system() != 'Windows')
# subprocess.call(command, shell=False)
# Replace args.audio and args.outfile with the actual variables or arguments
audio_input = voice_audio
video_input = 'temp/result.avi'
output_file = outfile
# Construct the ffmpeg command using ffmpeg-python
audio_stream = ffmpeg.input(audio_input)
video_stream = ffmpeg.input(video_input)
ffmpeg.concat(video_stream, audio_stream, v=1, a=1).output(output_file, strict='-2', qscale=1).run(overwrite_output=True)