Spaces:
Sleeping
Sleeping
File size: 14,634 Bytes
99bbd64 dffa418 99bbd64 89ac774 d034937 7dbf682 41d24fb e74682a 7a69cc2 dffa418 41d24fb afbea99 41d24fb bcc36a0 24a440f fa24c7d e74682a 41d24fb e74682a 7a69cc2 e74682a fa53273 41d24fb 7a69cc2 e941bd7 7a69cc2 d034937 41d24fb e74682a 41d24fb d034937 41d24fb fa53273 41d24fb fa53273 e74682a dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 7a69cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
#Fast APi Packages
from fastapi import FastAPI, File, HTTPException, status
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import json
from typing import List, Dict, Any
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from datetime import datetime
import warnings
import os
import logging
import requests
import io
from sklearn.preprocessing import StandardScaler
from collections import defaultdict
warnings.filterwarnings('ignore')
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# URL of the Excel file
EXCEL_URL = "https://huggingface.co/spaces/Vaibhav84/RecommendationAPI/resolve/main/DataSetSample.xlsx"
try:
# Download the file from URL
logger.info(f"Attempting to download Excel file from: {EXCEL_URL}")
response = requests.get(EXCEL_URL)
response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx
# Read the Excel file from the downloaded content
excel_content = io.BytesIO(response.content)
purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History',
parse_dates=['Purchase_Date'])
# Read Customer Profile sheet
excel_content.seek(0) # Reset buffer position
customer_profiles = pd.read_excel(excel_content, sheet_name='Customer Profile (Individual)')
logger.info("Successfully downloaded and loaded Excel file")
# Process the data
purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str)
product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict()
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
# Process customer profiles data
customer_profiles['Customer_Id'] = customer_profiles['Customer_Id'].astype(str)
# Normalize numerical features if they exist
numerical_features = ['Age', 'Income per year (in dollars)'] # Add or modify based on your actual columns
scaler = StandardScaler()
customer_profiles[numerical_features] = scaler.fit_transform(customer_profiles[numerical_features])
logger.info("Data processing completed successfully")
except Exception as e:
logger.error(f"Error downloading or processing data: {str(e)}")
raise
def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]:
"""
Get both purchased items and recommendations for a user
"""
user_id = str(user_id)
if user_id not in purchase_counts.index:
return [], []
purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0])
purchased_items_info = []
user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id]
for item in purchased_items:
item_purchases = user_purchases[user_purchases['Product_Id'] == item]
total_amount = float(item_purchases['Amount (In Dollars)'].sum())
last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max())
category = product_categories.get(item, 'Unknown')
purchased_items_info.append({
'product_id': item,
'category': category,
'total_amount': total_amount,
'last_purchase': last_purchase.strftime('%Y-%m-%d')
})
user_idx = purchase_counts.index.get_loc(user_id)
user_history = sparse_purchase_counts[user_idx].toarray().flatten()
similarities = cosine_similarities.dot(user_history)
purchased_indices = np.where(user_history > 0)[0]
similarities[purchased_indices] = 0
recommended_indices = np.argsort(similarities)[::-1][:n]
recommended_items = list(purchase_counts.columns[recommended_indices])
recommended_items = [item for item in recommended_items if item not in purchased_items]
recommended_items_info = [
{
'product_id': item,
'category': product_categories.get(item, 'Unknown')
}
for item in recommended_items
]
return purchased_items_info, recommended_items_info
@app.get("/")
async def root():
return {
"message": "Welcome to the Recommendation API",
"status": "running",
"data_loaded": purchase_history is not None
}
@app.get("/recommendations/{customer_id}")
async def get_recommendations(customer_id: str, n: int = 5):
"""
Get recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing purchase history and recommendations
"""
try:
purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"purchase_history": purchased_items,
"recommendations": recommended_items
}
except Exception as e:
logger.error(f"Error processing request for customer {customer_id}: {str(e)}")
raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}")
@app.get("/health")
async def health_check():
"""
Health check endpoint that returns system information
"""
return {
"status": "healthy",
"data_loaded": purchase_history is not None,
"number_of_customers": len(purchase_counts.index) if purchase_history is not None else 0,
"number_of_products": len(purchase_counts.columns) if purchase_history is not None else 0
}
@app.post("/login")
async def login(customer_id: str, password: str):
"""
Login endpoint to validate customer ID and password
Parameters:
- customer_id: The ID of the customer to validate
- password: Password (first three chars of customer_id + "123")
Returns:
- JSON object containing login status and message
"""
try:
# Convert customer_id to string to match the format in purchase_history
customer_id = str(customer_id)
# Generate expected password (first three chars + "123")
expected_password = f"{customer_id[:3]}123"
# Check if customer exists and password matches
if customer_id in purchase_history['Customer_Id'].unique():
if password == expected_password:
# Get customer's basic information
customer_data = purchase_history[purchase_history['Customer_Id'] == customer_id]
total_purchases = len(customer_data)
total_spent = customer_data['Amount (In Dollars)'].sum()
# Convert last purchase date to datetime if it's not already
last_purchase = pd.to_datetime(customer_data['Purchase_Date'].max())
last_purchase_str = last_purchase.strftime('%Y-%m-%d')
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"message": "Login successful",
"customer_id": customer_id,
"customer_stats": {
"total_purchases": total_purchases,
"total_spent": float(total_spent),
"last_purchase_date": last_purchase_str
}
}
)
else:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={
"status": "error",
"message": "Invalid password"
}
)
else:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={
"status": "error",
"message": "Invalid customer ID"
}
)
except Exception as e:
logger.error(f"Error during login for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error during login process: {str(e)}"
)
# Add content recommendation function
def get_content_recommendations(customer_id: str, n: int = 5) -> List[Dict]:
"""
Get content recommendations based on customer profile
"""
try:
# Get customer profile
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
# Define content rules based on customer attributes
content_suggestions = []
# Age-based recommendations
age = customer_profile['Age'] * scaler.scale_[0] + scaler.mean_[0] # Denormalize age
if age < 25:
content_suggestions.extend([
{"type": "Video", "title": "Getting Started with Personal Finance", "category": "Financial Education"},
{"type": "Article", "title": "Budgeting Basics for Young Adults", "category": "Financial Planning"},
{"type": "Interactive", "title": "Investment 101 Quiz", "category": "Education"}
])
elif age < 40:
content_suggestions.extend([
{"type": "Video", "title": "Investment Strategies for Growing Wealth", "category": "Investment"},
{"type": "Article", "title": "Family Financial Planning Guide", "category": "Financial Planning"},
{"type": "Webinar", "title": "Real Estate Investment Basics", "category": "Investment"}
])
else:
content_suggestions.extend([
{"type": "Video", "title": "Retirement Planning Strategies", "category": "Retirement"},
{"type": "Article", "title": "Estate Planning Essentials", "category": "Financial Planning"},
{"type": "Webinar", "title": "Tax Optimization for Retirement", "category": "Tax Planning"}
])
# Income-based recommendations
income = customer_profile['Income'] * scaler.scale_[1] + scaler.mean_[1] # Denormalize income
if income < 50000:
content_suggestions.extend([
{"type": "Video", "title": "Debt Management Strategies", "category": "Debt Management"},
{"type": "Article", "title": "Saving on a Tight Budget", "category": "Budgeting"}
])
elif income < 100000:
content_suggestions.extend([
{"type": "Video", "title": "Tax-Efficient Investment Strategies", "category": "Investment"},
{"type": "Article", "title": "Maximizing Your 401(k)", "category": "Retirement"}
])
else:
content_suggestions.extend([
{"type": "Video", "title": "Advanced Tax Planning Strategies", "category": "Tax Planning"},
{"type": "Article", "title": "High-Net-Worth Investment Guide", "category": "Investment"}
])
# Add personalization based on purchase history
if customer_id in purchase_history['Customer_Id'].unique():
customer_purchases = purchase_history[purchase_history['Customer_Id'] == customer_id]
categories = customer_purchases['Category'].unique()
for category in categories:
if category == 'Investment':
content_suggestions.append({
"type": "Video",
"title": f"Advanced {category} Strategies",
"category": category
})
elif category == 'Insurance':
content_suggestions.append({
"type": "Article",
"title": f"Understanding Your {category} Options",
"category": category
})
# Remove duplicates and limit to n recommendations
seen = set()
unique_suggestions = []
for suggestion in content_suggestions:
key = (suggestion['title'], suggestion['type'])
if key not in seen:
seen.add(key)
unique_suggestions.append(suggestion)
return unique_suggestions[:n]
except Exception as e:
logger.error(f"Error generating content recommendations: {str(e)}")
return []
# Add new endpoint for content recommendations
@app.get("/content-recommendations/{customer_id}")
async def get_customer_content_recommendations(customer_id: str, n: int = 5):
"""
Get personalized content recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing personalized content recommendations
"""
try:
# Validate customer
if customer_id not in customer_profiles['Customer_Id'].unique():
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Customer ID not found"
)
# Get customer profile summary
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
profile_summary = {
"age_group": "Young" if customer_profile['Age'] < 25 else "Middle" if customer_profile['Age'] < 40 else "Senior",
"income_level": "Low" if customer_profile['Income'] < 50000 else "Medium" if customer_profile['Income'] < 100000 else "High"
}
# Get content recommendations
recommendations = get_content_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"profile_summary": profile_summary,
"recommendations": recommendations
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error processing content recommendations for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing request: {str(e)}"
) |