Spaces:
Sleeping
Sleeping
File size: 30,369 Bytes
99bbd64 dffa418 99bbd64 89ac774 e07a9b8 d034937 e07a9b8 7dbf682 41d24fb e74682a 95c8c69 7a69cc2 d66710e 95c8c69 d66710e 41d24fb afbea99 d66710e 95c8c69 41d24fb bcc36a0 24a440f fa24c7d e74682a 0892eee 41d24fb e74682a 0892eee 8551e3d 7a69cc2 1c8d444 0892eee 1c8d444 e74682a fa53273 41d24fb 7a69cc2 e941bd7 7a69cc2 1c8d444 d034937 41d24fb e74682a 41d24fb d034937 41d24fb fa53273 41d24fb fa53273 e74682a dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 3d9c6c2 dffa418 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 7904f7c 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 fbff3c3 7a69cc2 ada7a79 7a69cc2 fbff3c3 7a69cc2 31f56d4 7a69cc2 1c8d444 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 6253ee3 87a3b83 d66710e 0818c89 e24b745 b8ca3f3 d66710e b8ca3f3 d66710e 0818c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
#Fast APi Packages
from fastapi import FastAPI, File, HTTPException, status
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import json
from typing import List, Dict, Any, Optional
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from datetime import datetime, timedelta
from statistics import mean
import warnings
import os
import logging
import requests
import io
import os
from sklearn.preprocessing import StandardScaler
from collections import defaultdict
from dotenv import load_dotenv
# load all the environment variables
from openai import OpenAI
warnings.filterwarnings('ignore')
client = OpenAI(
base_url = "https://integrate.api.nvidia.com/v1",
api_key = os.getenv("NVidea_Key")
)
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# URL of the Excel file
EXCEL_URL = "https://huggingface.co/spaces/Vaibhav84/RecommendationAPI/resolve/main/DataSetSample.xlsx"
try:
# Download the file from URL
logger.info(f"Attempting to download Excel file from: {EXCEL_URL}")
response = requests.get(EXCEL_URL)
response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx
# Read the Excel file from the downloaded content
excel_content = io.BytesIO(response.content)
purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History',
parse_dates=['Purchase_Date'])
# Read Customer Profile sheet
excel_content.seek(0) # Reset buffer position
customer_profiles = pd.read_excel(excel_content, sheet_name='Customer Profile (Individual)')
# Read Social Media Sentiment
excel_content.seek(0) # Reset buffer position
customer_Media = pd.read_excel(excel_content, sheet_name='Social Media Sentiment',parse_dates=['Timestamp'])
logger.info("Successfully downloaded and loaded Excel file")
# Process the data
purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str)
product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict()
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
# Process customer profiles data
customer_profiles['Customer_Id'] = customer_profiles['Customer_Id'].astype(str)
# Normalize numerical features if they exist
numerical_features = ['Age', 'Income per year (in dollars)'] # Add or modify based on your actual columns
scaler = StandardScaler()
customer_profiles[numerical_features] = scaler.fit_transform(customer_profiles[numerical_features])
# Process the data media
customer_Media['Customer_Id'] = customer_Media['Customer_Id'].astype(str)
tweet_categories = customer_Media[['Post_Id', 'Platform']].drop_duplicates().set_index('Post_Id')['Platform'].to_dict()
tweet_counts = customer_Media.groupby(['Customer_Id', 'Post_Id']).size().unstack(fill_value=0)
sparse_tweet_counts = sparse.csr_matrix(tweet_counts)
cosine_similarities_tweet = cosine_similarity(sparse_tweet_counts.T)
logger.info("Data processing completed successfully")
except Exception as e:
logger.error(f"Error downloading or processing data: {str(e)}")
raise
def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]:
"""
Get both purchased items and recommendations for a user
"""
user_id = str(user_id)
if user_id not in purchase_counts.index:
return [], []
purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0])
purchased_items_info = []
user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id]
for item in purchased_items:
item_purchases = user_purchases[user_purchases['Product_Id'] == item]
total_amount = float(item_purchases['Amount (In Dollars)'].sum())
last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max())
category = product_categories.get(item, 'Unknown')
purchased_items_info.append({
'product_id': item,
'category': category,
'total_amount': total_amount,
'last_purchase': last_purchase.strftime('%Y-%m-%d')
})
user_idx = purchase_counts.index.get_loc(user_id)
user_history = sparse_purchase_counts[user_idx].toarray().flatten()
similarities = cosine_similarities.dot(user_history)
purchased_indices = np.where(user_history > 0)[0]
similarities[purchased_indices] = 0
recommended_indices = np.argsort(similarities)[::-1][:n]
recommended_items = list(purchase_counts.columns[recommended_indices])
recommended_items = [item for item in recommended_items if item not in purchased_items]
recommended_items_info = [
{
'product_id': item,
'category': product_categories.get(item, 'Unknown')
}
for item in recommended_items
]
return purchased_items_info, recommended_items_info
@app.get("/")
async def root():
return {
"message": "Welcome to the Recommendation API",
"status": "running",
"data_loaded": purchase_history is not None
}
@app.get("/recommendations/{customer_id}")
async def get_recommendations(customer_id: str, n: int = 5):
"""
Get recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing purchase history and recommendations
"""
try:
purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"purchase_history": purchased_items,
"recommendations": recommended_items
}
except Exception as e:
logger.error(f"Error processing request for customer {customer_id}: {str(e)}")
raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}")
@app.get("/health")
async def health_check():
"""
Health check endpoint that returns system information
"""
return {
"status": "healthy",
"data_loaded": purchase_history is not None,
"number_of_customers": len(purchase_counts.index) if purchase_history is not None else 0,
"number_of_products": len(purchase_counts.columns) if purchase_history is not None else 0
}
@app.post("/login")
async def login(customer_id: str, password: str):
"""
Login endpoint to validate customer ID and password
Parameters:
- customer_id: The ID of the customer to validate
- password: Password (first three chars of customer_id + "123")
Returns:
- JSON object containing login status and message
"""
try:
# Convert customer_id to string to match the format in purchase_history
customer_id = str(customer_id)
# Generate expected password (first three chars + "123")
expected_password = f"{customer_id[:3]}123"
# Check if customer exists and password matches
if customer_id in purchase_history['Customer_Id'].unique():
if password == expected_password:
# Get customer's basic information
customer_data = purchase_history[purchase_history['Customer_Id'] == customer_id]
total_purchases = len(customer_data)
total_spent = customer_data['Amount (In Dollars)'].sum()
# Convert last purchase date to datetime if it's not already
last_purchase = pd.to_datetime(customer_data['Purchase_Date'].max())
last_purchase_str = last_purchase.strftime('%Y-%m-%d')
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"message": "Login successful",
"customer_id": customer_id,
"customer_stats": {
"total_purchases": total_purchases,
"total_spent": float(total_spent),
"last_purchase_date": last_purchase_str
}
}
)
else:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={
"status": "error",
"message": "Invalid password"
}
)
else:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={
"status": "error",
"message": "Invalid customer ID"
}
)
except Exception as e:
logger.error(f"Error during login for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error during login process: {str(e)}"
)
# Add content recommendation function
def get_content_recommendations(customer_id: str, n: int = 5) -> List[Dict]:
"""
Get content recommendations based on customer profile
"""
try:
# Get customer profile
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
# Define content rules based on customer attributes
content_suggestions = []
# Age-based recommendations
age = customer_profile['Age'] * scaler.scale_[0] + scaler.mean_[0] # Denormalize age
if age < 25:
content_suggestions.extend([
{"type": "Video", "title": "Getting Started with Personal Finance", "category": "Financial Education"},
{"type": "Article", "title": "Budgeting Basics for Young Adults", "category": "Financial Planning"},
{"type": "Interactive", "title": "Investment 101 Quiz", "category": "Education"}
])
elif age < 40:
content_suggestions.extend([
{"type": "Video", "title": "Investment Strategies for Growing Wealth", "category": "Investment"},
{"type": "Article", "title": "Family Financial Planning Guide", "category": "Financial Planning"},
{"type": "Webinar", "title": "Real Estate Investment Basics", "category": "Investment"}
])
else:
content_suggestions.extend([
{"type": "Video", "title": "Retirement Planning Strategies", "category": "Retirement"},
{"type": "Article", "title": "Estate Planning Essentials", "category": "Financial Planning"},
{"type": "Webinar", "title": "Tax Optimization for Retirement", "category": "Tax Planning"}
])
# Income-based recommendations
income = customer_profile['Income per year (in dollars)'] * scaler.scale_[1] + scaler.mean_[1] # Denormalize income
if income < 50000:
content_suggestions.extend([
{"type": "Video", "title": "Debt Management Strategies", "category": "Debt Management"},
{"type": "Article", "title": "Saving on a Tight Budget", "category": "Budgeting"}
])
elif income < 100000:
content_suggestions.extend([
{"type": "Video", "title": "Tax-Efficient Investment Strategies", "category": "Investment"},
{"type": "Article", "title": "Maximizing Your 401(k)", "category": "Retirement"}
])
else:
content_suggestions.extend([
{"type": "Video", "title": "Advanced Tax Planning Strategies", "category": "Tax Planning"},
{"type": "Article", "title": "High-Net-Worth Investment Guide", "category": "Investment"}
])
# Add personalization based on purchase history
if customer_id in purchase_history['Customer_Id'].unique():
customer_purchases = purchase_history[purchase_history['Customer_Id'] == customer_id]
categories = customer_purchases['Category'].unique()
for category in categories:
if category == 'Investment':
content_suggestions.append({
"type": "Video",
"title": f"Advanced {category} Strategies",
"category": category
})
elif category == 'Insurance':
content_suggestions.append({
"type": "Article",
"title": f"Understanding Your {category} Options",
"category": category
})
# Remove duplicates and limit to n recommendations
seen = set()
unique_suggestions = []
for suggestion in content_suggestions:
key = (suggestion['title'], suggestion['type'])
if key not in seen:
seen.add(key)
unique_suggestions.append(suggestion)
return unique_suggestions[:n]
except Exception as e:
logger.error(f"Error generating content recommendations: {str(e)}")
return []
# Add new endpoint for content recommendations
@app.get("/content-recommendations/{customer_id}")
async def get_customer_content_recommendations(customer_id: str, n: int = 5):
"""
Get personalized content recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing personalized content recommendations
"""
try:
# Validate customer
if customer_id not in customer_profiles['Customer_Id'].unique():
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Customer ID not found"
)
# Get customer profile summary
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
profile_summary = {
"age_group": "Young" if customer_profile['Age'] < 25 else "Middle" if customer_profile['Age'] < 40 else "Senior",
"income_level": "Low" if customer_profile['Income per year (in dollars)'] < 50000 else "Medium" if customer_profile['Income per year (in dollars)'] < 100000 else "High"
}
# Get content recommendations
recommendations = get_content_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"profile_summary": profile_summary,
"recommendations": recommendations
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error processing content recommendations for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing request: {str(e)}"
)
@app.get("/social-sentiment/{customer_id}")
async def get_social_sentiment(customer_id: str):
"""
Get social media sentiment analysis for a customer
Parameters:
- customer_id: The ID of the customer
Returns:
- JSON object containing sentiment analysis and insights
"""
try:
# Validate customer
if customer_id not in customer_Media['Customer_Id'].unique():
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="No social media data found for this customer"
)
# Get customer's social media data
customer_posts = customer_Media[customer_Media['Customer_Id'] == customer_id]
# Calculate sentiment metrics
avg_sentiment = customer_posts['Sentiment_Score'].mean()
recent_sentiment = customer_posts.sort_values('Timestamp', ascending=False)['Sentiment_Score'].iloc[0]
# Calculate sentiment trend
customer_posts['Timestamp'] = pd.to_datetime(customer_posts['Timestamp'])
sentiment_trend = customer_posts.sort_values('Timestamp')
# Platform breakdown
platform_stats = customer_posts.groupby('Platform').agg({
'Post_Id': 'count',
'Sentiment_Score': 'mean'
}).round(2)
platform_breakdown = [
{
"platform": platform,
"post_count": int(stats['Post_Id']),
"avg_sentiment": float(stats['Sentiment_Score'])
}
for platform, stats in platform_stats.iterrows()
]
# Intent analysis
intent_distribution = customer_posts['Intent'].value_counts().to_dict()
# Get most recent posts with sentiments
recent_posts = customer_posts.sort_values('Timestamp', ascending=False).head(5)
recent_activities = [
{
"timestamp": post['Timestamp'].strftime('%Y-%m-%d %H:%M:%S'),
"platform": post['Platform'],
"content": post['Content'],
"sentiment_score": float(post['Sentiment_Score']),
"intent": post['Intent']
}
for _, post in recent_posts.iterrows()
]
# Calculate sentiment categories
sentiment_categories = {
"positive": len(customer_posts[customer_posts['Sentiment_Score'] > 0.5]),
"neutral": len(customer_posts[(customer_posts['Sentiment_Score'] >= -0.5) &
(customer_posts['Sentiment_Score'] <= 0.5)]),
"negative": len(customer_posts[customer_posts['Sentiment_Score'] < -0.5])
}
# Determine overall mood
if avg_sentiment > 0.5:
overall_mood = "Positive"
elif avg_sentiment < -0.5:
overall_mood = "Negative"
else:
overall_mood = "Neutral"
# Generate insights
insights = []
# Trend insight
sentiment_change = recent_sentiment - customer_posts['Sentiment_Score'].iloc[0]
if abs(sentiment_change) > 0.3:
trend_direction = "improved" if sentiment_change > 0 else "declined"
insights.append(f"Customer sentiment has {trend_direction} over time")
# Platform insight
if len(platform_stats) > 1:
best_platform = platform_stats['Sentiment_Score'].idxmax()
insights.append(f"Customer shows most positive engagement on {best_platform}")
# Engagement insight
if len(recent_activities) > 0:
recent_avg = sum(post['sentiment_score'] for post in recent_activities) / len(recent_activities)
if abs(recent_avg - avg_sentiment) > 0.3:
trend = "improving" if recent_avg > avg_sentiment else "declining"
insights.append(f"Recent sentiment is {trend} compared to overall average")
return {
"customer_id": customer_id,
"overall_sentiment": {
"average_score": float(avg_sentiment),
"recent_score": float(recent_sentiment),
"overall_mood": overall_mood
},
"sentiment_distribution": sentiment_categories,
"platform_analysis": platform_breakdown,
"intent_analysis": intent_distribution,
"recent_activities": recent_activities,
"insights": insights,
"analysis_timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error processing social sentiment for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing request: {str(e)}"
)
# Add a combined endpoint for full customer analysis
@app.get("/customer-analysis/{customer_id}")
async def get_customer_analysis(customer_id: str):
"""
Get comprehensive customer analysis including recommendations and sentiment
Parameters:
- customer_id: The ID of the customer
Returns:
- JSON object containing full customer analysis
"""
try:
# Get content recommendations
content_recs = await get_customer_content_recommendations(customer_id)
# Get social sentiment
sentiment_analysis = await get_social_sentiment(customer_id)
# Get purchase recommendations
purchase_recs = await get_recommendations(customer_id)
return {
"customer_id": customer_id,
"sentiment_analysis": sentiment_analysis,
"content_recommendations": content_recs,
"purchase_recommendations": purchase_recs,
"analysis_timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
except Exception as e:
logger.error(f"Error processing customer analysis for {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing request: {str(e)}"
)
@app.get("/financial-recommendations/{customer_id}")
async def get_financial_recommendations(customer_id: str):
"""
Get hyper-personalized financial recommendations for a customer
"""
try:
# Validate customer
if customer_id not in customer_profiles['Customer_Id'].values:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Customer not found"
)
# Get customer profile data
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
# Get purchase history
customer_purchases = purchase_history[purchase_history['Customer_Id'] == customer_id]
# Get social sentiment data
customer_sentiment = customer_Media[customer_Media['Customer_Id'] == customer_id]
# Calculate financial metrics with type conversion
try:
total_spent = customer_purchases['Amount (In Dollars)'].astype(float).sum()
avg_transaction = customer_purchases['Amount (In Dollars)'].astype(float).mean()
# Convert purchase dates to datetime
customer_purchases['Purchase_Date'] = pd.to_datetime(customer_purchases['Purchase_Date'])
date_range = (customer_purchases['Purchase_Date'].max() - customer_purchases['Purchase_Date'].min()).days
purchase_frequency = len(customer_purchases) / (date_range + 1) if date_range > 0 else 0
except (ValueError, TypeError) as e:
logger.error(f"Error processing numerical calculations: {str(e)}")
total_spent = 0
avg_transaction = 0
purchase_frequency = 0
try:
# Convert age and income to float
age = float(customer_profile['Age'])
income = float(customer_profile['Income per year (in dollars)'])
# Calculate spending ratio
spending_ratio = (total_spent / income) * 100 if income > 0 else 0
except (ValueError, TypeError) as e:
logger.error(f"Error processing profile data: {str(e)}")
age = 0
income = 0
spending_ratio = 0
# Generate recommendations based on processed data
recommendations = {
"investment_recommendations": [],
"savings_recommendations": [],
"budget_recommendations": [],
"risk_assessment": "",
"action_items": []
}
# Investment recommendations based on age
if age < 30:
recommendations["investment_recommendations"] = [
"Consider starting a retirement account with aggressive growth funds",
"Look into low-cost index funds for long-term growth",
"Build an emergency fund of 3-6 months expenses"
]
elif age < 50:
recommendations["investment_recommendations"] = [
"Diversify investment portfolio with mix of stocks and bonds",
"Consider real estate investment opportunities",
"Maximize retirement contributions"
]
else:
recommendations["investment_recommendations"] = [
"Focus on preservation of capital",
"Consider dividend-paying stocks",
"Review retirement withdrawal strategy"
]
# Savings recommendations based on spending ratio
if spending_ratio > 70:
recommendations["savings_recommendations"] = [
"Critical: Reduce monthly expenses",
"Implement 50/30/20 budgeting rule",
"Identify and cut non-essential spending"
]
elif spending_ratio > 50:
recommendations["savings_recommendations"] = [
"Look for additional saving opportunities",
"Consider automated savings transfers",
"Review subscription services"
]
else:
recommendations["savings_recommendations"] = [
"Maintain current saving habits",
"Consider increasing investment contributions",
"Look into tax-advantaged savings options"
]
# Budget recommendations based on purchase patterns
try:
category_spending = customer_purchases.groupby('Category')['Amount (In Dollars)'].astype(float).sum()
top_spending_categories = category_spending.nlargest(3)
recommendations["budget_recommendations"] = [
f"Highest spending in {cat}: ${amount:.2f}"
for cat, amount in top_spending_categories.items()
]
except Exception as e:
logger.error(f"Error processing category spending: {str(e)}")
recommendations["budget_recommendations"] = ["Unable to process category spending"]
# Risk assessment based on sentiment
try:
recent_sentiment = customer_sentiment['Sentiment_Score'].astype(float).mean()
if pd.isna(recent_sentiment):
risk_level = "Balanced"
elif recent_sentiment < -0.2:
risk_level = "Conservative"
elif recent_sentiment > 0.2:
risk_level = "Moderate"
else:
risk_level = "Balanced"
except Exception as e:
logger.error(f"Error processing sentiment: {str(e)}")
risk_level = "Balanced"
recommendations["risk_assessment"] = f"Based on your profile and behavior: {risk_level} risk tolerance"
# Action items
recommendations["action_items"] = [
{
"priority": "High",
"action": "Review and adjust monthly budget",
"impact": "Immediate",
"timeline": "Next 30 days"
},
{
"priority": "Medium",
"action": "Rebalance investment portfolio",
"impact": "Long-term",
"timeline": "Next 90 days"
},
{
"priority": "Low",
"action": "Schedule financial planning review",
"impact": "Strategic",
"timeline": "Next 6 months"
}
]
return {
"customer_id": customer_id,
"financial_summary": {
"total_spent": float(total_spent),
"average_transaction": float(avg_transaction),
"spending_ratio": float(spending_ratio),
"purchase_frequency": float(purchase_frequency)
},
"risk_profile": {
"age_group": "Young" if age < 30 else "Middle-aged" if age < 50 else "Senior",
"income_bracket": "Low" if income < 50000 else "Medium" if income < 100000 else "High",
"risk_tolerance": risk_level
},
"recommendations": recommendations,
"analysis_timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
except Exception as e:
logger.error(f"Error processing financial recommendations for customer {customer_id}: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing request: {str(e)}"
)
def Get_contentDescription(category:str):
return ""
inputdata = "Generate articles for "
inputdata += category +" in few words. Don't show the thinking part in the output"
completion = client.chat.completions.create(
model="microsoft/phi-4-mini-instruct",
messages=[{"role":"user","content":inputdata}],
temperature=0.6,
top_p=0.7,
max_tokens=4096,
stream=True
)
full_response = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
full_response += chunk.choices[0].delta.content
# Clean the complete response
cleaned_response = full_response.replace("<think>", "").replace("</think>", "").strip()
return(cleaned_response)
@app.get("/contentcreation/{category}")
async def contentcreation(category:str):
cleaned_response= Get_contentDescription(category)
return(cleaned_response)
|