Vaibhav84's picture
Changes
02cf2aa
raw
history blame
3.54 kB
#Fast APi Packages
from fastapi import FastAPI,File, UploadFile
from pydantic import BaseModel
import json
from typing_extensions import Annotated
#SkillExtraction Packages
from PyPDF2 import PdfReader
import psycopg2
from psycopg2 import sql
import pandas as pd
from datetime import date
import numpy as np
import spacy
import re
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from io import StringIO
from spacy.matcher import PhraseMatcher
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
from psycopg2.extensions import register_adapter, AsIs
register_adapter(np.int64, AsIs)
import warnings
warnings.filterwarnings('ignore')
#Custom Classes for endpoints
from DbConnection import DbConnection
from UploadFile import UploadOpenFile
from SkillExtract import SkillExtractorDetails
import os
os.environ['HF_HOME'] = '/hug/cache/'
app = FastAPI()
class FileDetails(BaseModel):
filecontents: str
filename: str
fileid: str
message: str
class SkillDetails(BaseModel):
skillid: int
requiredSkills: str
softSkills: str
goodToHaveSkills: str
class FileResponse(BaseModel):
fileid: int
message: str
nlp = spacy.load("en_core_web_lg")
# init skill extractor
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)
@app.get("/")
async def root():
return {"SkillAPI":"SkillAPi Version 0.05"}
#https://vaibhav84-resumeapi.hf.space/docs
db_params = DbConnection.GetDbConnection()
def parse_csv(df):
res = df.to_json(orient="records")
parsed = json.loads(res)
return parsed
@app.get("/ProfileMatch")
def ProfileMatchResults():
dbQuery = "select * from profilematch"
conn = psycopg2.connect(**db_params)
df = pd.read_sql_query(dbQuery, conn)
return parse_csv(df)
@app.post("/UploadFile/")
def UploadFileDetails(file_data: FileDetails):
returnID = UploadOpenFile.uploadFile(file_data.filecontents,file_data.filename,db_params)
file_data.filecontents = ""
file_data.fileid = str(returnID)
file_data.message = "File Uploaded Successfully!"
return file_data
@app.post("/ExtractSkills/")
def ExtractSkills(skill_data: SkillDetails):
returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,skill_data.skillid)
details = returnSkills.split('@')
skill_data.requiredSkills = details[0]
skill_data.softSkills = details[1]
skill_data.goodToHaveSkills = details[1]
return skill_data
@app.post("/uploadJobDescription/")
def create_upload_file(file: bytes = File(...)):
content = file.decode('utf-8')
lines = content.split('\n')
return {"content": lines}
@app.post("/uploadJobDescriptionPDF/")
def upload_PDF(file: UploadFile = File(...)):
try:
contents = file.file.read()
with open(file.filename, 'wb') as f:
f.write(contents)
except Exception:
return {"message": "There was an error uploading the file"}
finally:
file.file.close()
return {"message": f"Successfully uploaded {contents}"}
@app.post("/uploadJobDescriptionPDF2/")
def upload_PDF2(file: UploadFile = File(...)):
text =''
if file.filename.endswith("pdf"):
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text()
return {"message": f"Successfully uploaded {text}"}