Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
#from huggingface_hub import login | |
#login(token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj") | |
my_token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj" | |
# Load model and tokenizer | |
model_name = "meta-llama/CodeLlama-7b-hf" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=my_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=my_token) | |
# Define the inference function | |
def generate_code(prompt): | |
# Tokenize the input prompt | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) | |
# Generate code using the model | |
outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1) | |
# Decode the generated output to a string | |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_code | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=generate_code, | |
inputs="text", | |
outputs="text", | |
title="CodeLlama-7b Python Code Generator", | |
description="Generate Python code using the CodeLlama-7b model. Simply input a prompt and get back the generated code.", | |
) | |
# Launch the Gradio interface | |
interface.launch() |