Spaces:
Runtime error
Runtime error
### 1. Imports and class names app ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open('class_names.txt', 'r') as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
### 2. Model and transforms preparation ### | |
# Create model and transforms | |
effnetb2, effnetb2_transforms = create_effnetb2_model() | |
# Load saved weight | |
effnetb2.load_state_dict(torch.load(f='09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', | |
map_location=torch.device('cpu'))) # load to cpu | |
### 3. Predict function | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
transformed_img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th | |
# Put model into eval mode, make prediction | |
with torch.inference_mode(): | |
effnetb2.eval() | |
# Pass the transformed image through the model and turn the prediction logits into probabilities | |
pred_prob = effnetb2(transformed_img).softmax(dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: pred_prob[0][i].item() for i in range(len(class_names))} | |
# Calcualte pred time | |
end_time = timer() | |
inference_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, inference_time | |
### 4. Gradio app ### | |
# Create title, description and aritcle | |
title = 'FoodVision Big πποΈπͺ' | |
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/0.16/models/generated/torchvision.models.efficientnet_b2.html#efficientnet-b2) computer vision model to classify images 101 classes of food from the Food101 dataset.' | |
article = 'Created at [11. Turning our FoodVision Big model into a deployable app](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app).' | |
# Create example list | |
example_list = [['examples/' + example] for example in os.listdir('examples')] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to outputs | |
inputs=gr.Image(type='pil'), | |
outputs=[gr.Label(num_top_classes=5, label='Predictions'), | |
gr.Number(label='Prediction time (s)')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) # generate a publically shareable URL | |