File size: 851 Bytes
83c97bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
import torchvision
from torch import nn


def create_effnetb2_model(num_classese: int = 3,  # default output classes = 3 (pizza, steak , sushi)
                          seed: int = 42):
    # 1, 2, 3 Create EffNetB2 pretained weights, transforms and model
    weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
    transforms = weights.transforms()
    model = torchvision.models.efficientnet_b2(weights=weights)

    # 4. Freeze all layers in the base model
    for param in model.parameters():
        param.requires_grad = False

    # 5. Change classifier head with random seed for reproducibility
        torch.manual_seed(seed)
        model.classifier = nn.Sequential(
            nn.Dropout(p=.3, inplace=True),
            nn.Linear(in_features=1408, out_features=num_classese)
        )

    return model, transforms