Spaces:
Runtime error
Runtime error
File size: 7,295 Bytes
322f74c 3a16188 f823e77 5f50ed6 696557c 322f74c eac88f2 5f50ed6 e1efcdb d2a5fcd e1efcdb dcde33a e1efcdb dcde33a e1efcdb dcde33a 6875a6e dcde33a df96462 e74adc0 4e8739d b4bedb5 4e8739d 1cfdffa 4e8739d 99c292a 04ab46f 29e0d2d 04ab46f 29e0d2d 91c8163 be551a6 731e7a8 03d49a3 fe1b079 03d49a3 29e0d2d 3a16188 7672cd0 3a16188 42fc25c 3a16188 42fc25c 3a16188 42fc25c 3a16188 42fc25c 3a16188 42fc25c 3a16188 2d90ba4 3a16188 2d90ba4 3a16188 42fc25c 7672cd0 2d90ba4 7672cd0 3a16188 b94a687 3a16188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
HF_TOKEN = os.environ["HF_TOKEN"]
import re
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
from huggingface_hub import login, HfFolder
# from peft import PeftModel, PeftConfig
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_00")
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.float16)
# config=AutoConfig.from_pretrained("FlawedLLM/Bhashini_00")
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_00",
# device_map="auto",
# quantization_config=quantization_config,
# torch_dtype =torch.float16,
# low_cpu_mem_usage=True,
# use_safetensors=True,
# )
# # Assuming you have your HF repository in this format: "your_username/your_model_name"
# model_id = "FlawedLLM/BhashiniLLM"
# # Load the base model (the one you fine-tuned with LoRA)
# base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto') # Load in 8-bit for efficiency
# for param in base_model.parameters():
# param.data = param.data.to(torch.float16) # or torch.float32
# # Load the LoRA adapter weights
# model = PeftModel.from_pretrained(base_model, model_id)
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# model = AutoModel.from_pretrained("FlawedLLM/Bhashini", load_in_4bit=True, device_map='auto')
# I highly do NOT suggest - use Unsloth if possible
# from peft import AutoPeftModelForCausalLM
# from transformers import AutoTokenizer
# model = AutoPeftModelForCausalLM.from_pretrained(
# "FlawedLLM/Bhashini", # YOUR MODEL YOU USED FOR TRAINING
# load_in_4bit = True,
# )
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini")
# # Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_9")
# config = AutoConfig.from_pretrained("FlawedLLM/Bhashini_9") # Load configuration
# # quantization_config = BitsAndBytesConfig(
# # load_in_4bit=True,
# # bnb_4bit_use_double_quant=True,
# # bnb_4bit_quant_type="nf4",
# # bnb_4bit_compute_dtype=torch.float16
# # )
# # torch_dtype =torch.float16
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_9",config=config, ignore_mismatched_sizes=True).to('cuda')
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini89", trust_remote_code=True)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini89",
device_map="auto",
quantization_config=quantization_config,
torch_dtype =torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True,
trust_remote_code=True)
@spaces.GPU(duration=300)
def chunk_it(input_command, item_list):
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
if item_list is not None:
item_list = f'''The ItemName should be STRICTLY chosen from the given list : {item_list} , except when adding item. Try to be as strict as possible, if ItemName does not find anything similar in the list, then the ItemName should be "Null" '''
inputs = tokenizer(
[
alpaca_prompt.format(
f'''
You will receive text input that you need to analyze to perform the following tasks:
transaction: Record the details of an item transaction.
last n days transactions: Retrieve transaction records for a specified time period.
view risk inventory: View inventory items based on a risk category.
view inventory: View inventory details.
new items: Add new items to the inventory.
old items: View old items in inventory.
report generation: Generate various inventory reports.
Required Parameters:
Each task requires specific parameters to execute correctly:
transaction:
ItemName (string)
ItemQt (quantity - integer)
Type (string: "sale" or "purchase" or "return")
ShelfNo (string or integer)
ReorderPoint (integer)
last n days transactions:
ItemName (string)
Duration (integer: number of days)
view risk inventory:
RiskType (string: "overstock", "understock", or Null for all risk types)
view inventory:
ItemName (string)
ShelfNo (string or integer)
new items:
ItemName (string)
SellingPrice (number)
CostPrice (number)
old items:
ShelfNo (string or integer)
report generation:
ItemName (string)
Duration (integer: number of days)
ReportType (string: "profit", "revenue", "inventory", or Null for all reports)
{item_list}
If any things not available, write null
ALWAYS provide output in a JSON format.''', # instruction
input_command, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True)
tokenizer.batch_decode(outputs)
reply=tokenizer.batch_decode(outputs)
# Regular expression pattern to match content between "### Response:" and "<|end_of_text|>"
pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
# Search for the pattern in the text
match = re.search(pattern, reply[0], re.DOTALL) # re.DOTALL allows '.' to match newlines
reply = match.group(1).strip() # Extract and remove extra whitespace
return reply
# iface=gr.Interface(fn=chunk_it,
# inputs="text",
# inputs="text",
# outputs="text",
# title="Formatter_Pro",
# )
iface = gr.Interface(
fn=chunk_it,
inputs=[
gr.Textbox(label="Input Command", lines=3),
gr.Textbox(label="Item List", lines=5)
],
outputs="text",
title="Formatter Pro",
)
iface.launch(inline=False) |