File size: 10,810 Bytes
dde0367
 
 
 
 
 
 
 
 
 
 
 
22703ff
dde0367
 
 
 
 
3362f3e
dde0367
3362f3e
 
 
dde0367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17c9e7
 
9df6fd0
a6f0495
a364d85
 
a6f0495
a364d85
 
a6f0495
a364d85
 
a6f0495
a364d85
 
a6f0495
a364d85
 
dde0367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df6fd0
322f74c
 
3a16188
f823e77
 
5f50ed6
696557c
eac88f2
5f50ed6
e1efcdb
d2a5fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
e1efcdb
dcde33a
 
e1efcdb
dcde33a
 
 
 
e1efcdb
dcde33a
 
 
6875a6e
dcde33a
 
df96462
 
e74adc0
 
 
 
 
 
 
4e8739d
 
b4bedb5
4e8739d
 
1cfdffa
4e8739d
 
 
 
 
 
 
 
 
 
99c292a
6f18f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be551a6
6f18f2a
731e7a8
03d49a3
fe1b079
 
 
 
 
 
 
 
 
 
03d49a3
b9bdc7e
3a16188
 
 
7672cd0
3a16188
42fc25c
3a16188
 
 
 
 
 
 
 
42fc25c
3a16188
42fc25c
3a16188
 
 
42fc25c
3a16188
42fc25c
3a16188
 
2d90ba4
3a16188
 
 
 
 
 
 
 
 
 
 
 
 
2d90ba4
3a16188
42fc25c
7672cd0
b9bdc7e
7672cd0
 
3a16188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94a687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a16188
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# import torch; torch.version.cuda
# # from huggingface_hub import login, HfFolder
# import subprocess
# # import getpass

# # def run_sudo_command(cmd):
# #     try:
# #         password = getpass.getpass(prompt="Enter your sudo password: ")  # Securely get the password
# #         result = subprocess.run(["sudo", "-S"] + cmd, input=password.encode(), capture_output=True, text=True, check=True)
# #         print(result.stdout)
# #     except subprocess.CalledProcessError as e:
# #         print(f"Error executing command: {e.stderr}")

# # # Run the ldconfig command
# # run_sudo_command(["ldconfig", "/usr/lib64-nvidia"])

# def run_command(cmd, shell=False):
#     """Runs a shell command and prints the output."""
#     try:
#         result = subprocess.run(cmd, shell=shell, capture_output=True, text=True, check=True)
#         print(result.stdout)
#     except subprocess.CalledProcessError as e:
#         print(f"Error executing command: {e.stderr}")
# subprocess.run(["pip", "install", "--upgrade", "pip"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "torch"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "transformers"], check=True)
# # Pip install command as a list
# pip_command = [
#     "pip", 
#     "install", 
#     "--upgrade", 
#     "--force-reinstall", 
#     "--no-cache-dir",
#     "torch==2.1.1",
#     "triton",
#     "--index-url", 
#     "https://download.pytorch.org/whl/cu121"
# ]
# run_command(pip_command)
# run_command(["pip", "install", "--no-deps", "trl", "peft", "accelerate", "bitsandbytes"]) 
# # subprocess.run(["pip", "install", "--upgrade", "peft"], check=True)
# subprocess.run(["pip", "install", "xformers"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "accelerate"], check=True)
# subprocess.run(["unsloth[cu121-ampere-torch211] @ git+https://github.com/unslothai/unsloth.git"], check=True)
# import subprocess



# # 1. Create the conda environment
# run_command(["conda", "create", "-y", "--name", "unsloth_env", "python=3.10"])

# # 2. Activate the environment (Note: Requires shell=True)
# run_command("conda activate unsloth_env", shell=True)  

# # 3. Install PyTorch and related packages with conda
# run_command("conda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers")

# # 4. Install unsloth from the GitHub repository with pip
# run_command("pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"")

# # 5. Install additional pip packages without dependencies
# run_command("pip install --no-deps trl peft accelerate bitsandbytes")
import subprocess

def run_command(cmd):
    try:
        result = subprocess.run(cmd, capture_output=True, text=True, check=True)
        print(result.stdout)
    except subprocess.CalledProcessError as e:
        print(f"Error executing command: {e.stderr}")

# Pip install xformers
run_command([
    "pip",
    "install",
    "-U",
    "xformers<0.0.26",
    "--index-url",
    "https://download.pytorch.org/whl/cu121"
])

# Pip install unsloth from GitHub
run_command([
    "pip",
    "install",
    "unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git"
])

import os
HF_TOKEN = os.environ["HF_TOKEN"]
import re
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
# from peft import PeftModel, PeftConfig


# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_00")
# quantization_config = BitsAndBytesConfig(
#         load_in_4bit=True,
#         bnb_4bit_use_double_quant=True,
#         bnb_4bit_quant_type="nf4",  
#         bnb_4bit_compute_dtype=torch.float16)
# config=AutoConfig.from_pretrained("FlawedLLM/Bhashini_00")
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_00",
#                                              device_map="auto",
#                                              quantization_config=quantization_config, 
#                                              torch_dtype =torch.float16, 
#                                              low_cpu_mem_usage=True, 
#                                              use_safetensors=True,
#                                             )

# # Assuming you have your HF repository in this format: "your_username/your_model_name"
# model_id = "FlawedLLM/BhashiniLLM"

# # Load the base model (the one you fine-tuned with LoRA)
# base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')  # Load in 8-bit for efficiency
# for param in base_model.parameters():
#     param.data = param.data.to(torch.float16)  # or torch.float32

# # Load the LoRA adapter weights
# model = PeftModel.from_pretrained(base_model, model_id)
# tokenizer = AutoTokenizer.from_pretrained(model_id)



# model = AutoModel.from_pretrained("FlawedLLM/Bhashini", load_in_4bit=True, device_map='auto')
    # I highly do NOT suggest - use Unsloth if possible
# from peft import AutoPeftModelForCausalLM
# from transformers import AutoTokenizer
# model = AutoPeftModelForCausalLM.from_pretrained(
#         "FlawedLLM/Bhashini", # YOUR MODEL YOU USED FOR TRAINING
#         load_in_4bit = True,
#     )
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini")
# # Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig

# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_9")
# config = AutoConfig.from_pretrained("FlawedLLM/Bhashini_9")  # Load configuration

# # quantization_config = BitsAndBytesConfig(
# #         load_in_4bit=True,
# #         bnb_4bit_use_double_quant=True,
# #         bnb_4bit_quant_type="nf4",  
# #         bnb_4bit_compute_dtype=torch.float16
# # )

# # torch_dtype =torch.float16
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_9",config=config, ignore_mismatched_sizes=True).to('cuda')
# Load model directly

# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini89", trust_remote_code=True)
# quantization_config = BitsAndBytesConfig(
#         load_in_4bit=True,
#         bnb_4bit_use_double_quant=True,
#         bnb_4bit_quant_type="nf4",  
#         bnb_4bit_compute_dtype=torch.float16)
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini89", 
#                                              device_map="auto",
#                                              quantization_config=quantization_config, 
#                                              torch_dtype =torch.float16, 
#                                              low_cpu_mem_usage=True, 
#                                              use_safetensors=True,
#                                              trust_remote_code=True)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "FlawedLLM/Bhashini_gemma_lora_clean_final", # YOUR MODEL YOU USED FOR TRAINING
        max_seq_length = max_seq_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

# alpaca_prompt = You MUST copy from above!
@spaces.GPU(duration=300)
def chunk_it(input_command, item_list):
    alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
    
    ### Instruction:
    {}
    
    ### Input:
    {}
    
    ### Response:
    {}"""
    if item_list is not None:
        item_list = f'''The ItemName should be chosen from the given list : {item_list} , except when adding item. If ItemName does not find anything SIMILAR in the list, then the ItemName should be "Null" '''
    inputs = tokenizer(
    [
        alpaca_prompt.format(
            f'''
            You will receive  text input that you need to analyze to perform the following tasks:
            
            transaction: Record the details of an item transaction.
            last n days transactions: Retrieve transaction records for a specified time period.
            view risk inventory: View inventory items based on a risk category.
            view inventory: View inventory details.
            new items: Add new items to the inventory.
            old items: View old items in inventory.
            report generation: Generate various inventory reports.
            Required Parameters:
            
            Each task requires specific parameters to execute correctly:
            
            transaction:
                ItemName (string)
                ItemQt (quantity - integer)
                Type (string: "sale" or "purchase" or "return")
                ShelfNo (string or integer)
                ReorderPoint (integer)
            last n days transactions:
                ItemName (string)
                Duration (integer: number of days)
            view risk inventory:
                RiskType (string: "overstock", "understock", or Null for all risk types)
            view inventory:
                ItemName (string)
                ShelfNo (string or integer)
            new items:
                ItemName (string)
                SellingPrice (number)
                CostPrice (number)
            old items:
                ShelfNo (string or integer)
            report generation:
                ItemName (string)
                Duration (integer: number of days)
                ReportType (string: "profit", "revenue", "inventory", or Null for all reports)
            
             {item_list}
            

            ALWAYS provide output in a JSON format.''', # instruction
            input_command, # input
            "", # output - leave this blank for generation!
        )
    ], return_tensors = "pt").to("cuda")
    
    outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True)
    tokenizer.batch_decode(outputs)
    
    reply=tokenizer.batch_decode(outputs)
    # Regular expression pattern to match content between "### Response:" and "<|end_of_text|>"
    pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
    # Search for the pattern in the text
    match = re.search(pattern, reply[0], re.DOTALL)  # re.DOTALL allows '.' to match newlines
    reply = match.group(1).strip()  # Extract and remove extra whitespace

    return reply


# iface=gr.Interface(fn=chunk_it,
#                   inputs="text",
#                   inputs="text",
#                   outputs="text",
#                   title="Formatter_Pro",
#                   )


iface = gr.Interface(
    fn=chunk_it,
    inputs=[
        gr.Textbox(label="Input Command", lines=3),
        gr.Textbox(label="Item List", lines=5)
    ],
    outputs="text",
    title="Formatter Pro",
)

iface.launch(inline=False)