FlawedLLM
Update app.py
dde0367 verified
raw
history blame
10.8 kB
# import torch; torch.version.cuda
# # from huggingface_hub import login, HfFolder
# import subprocess
# # import getpass
# # def run_sudo_command(cmd):
# # try:
# # password = getpass.getpass(prompt="Enter your sudo password: ") # Securely get the password
# # result = subprocess.run(["sudo", "-S"] + cmd, input=password.encode(), capture_output=True, text=True, check=True)
# # print(result.stdout)
# # except subprocess.CalledProcessError as e:
# # print(f"Error executing command: {e.stderr}")
# # # Run the ldconfig command
# # run_sudo_command(["ldconfig", "/usr/lib64-nvidia"])
# def run_command(cmd, shell=False):
# """Runs a shell command and prints the output."""
# try:
# result = subprocess.run(cmd, shell=shell, capture_output=True, text=True, check=True)
# print(result.stdout)
# except subprocess.CalledProcessError as e:
# print(f"Error executing command: {e.stderr}")
# subprocess.run(["pip", "install", "--upgrade", "pip"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "torch"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "transformers"], check=True)
# # Pip install command as a list
# pip_command = [
# "pip",
# "install",
# "--upgrade",
# "--force-reinstall",
# "--no-cache-dir",
# "torch==2.1.1",
# "triton",
# "--index-url",
# "https://download.pytorch.org/whl/cu121"
# ]
# run_command(pip_command)
# run_command(["pip", "install", "--no-deps", "trl", "peft", "accelerate", "bitsandbytes"])
# # subprocess.run(["pip", "install", "--upgrade", "peft"], check=True)
# subprocess.run(["pip", "install", "xformers"], check=True)
# # subprocess.run(["pip", "install", "--upgrade", "accelerate"], check=True)
# subprocess.run(["unsloth[cu121-ampere-torch211] @ git+https://github.com/unslothai/unsloth.git"], check=True)
# import subprocess
# # 1. Create the conda environment
# run_command(["conda", "create", "-y", "--name", "unsloth_env", "python=3.10"])
# # 2. Activate the environment (Note: Requires shell=True)
# run_command("conda activate unsloth_env", shell=True)
# # 3. Install PyTorch and related packages with conda
# run_command("conda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers")
# # 4. Install unsloth from the GitHub repository with pip
# run_command("pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"")
# # 5. Install additional pip packages without dependencies
# run_command("pip install --no-deps trl peft accelerate bitsandbytes")
import subprocess
def run_command(cmd):
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
print(result.stdout)
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e.stderr}")
# Pip install xformers
run_command([
"pip",
"install",
"-U",
"xformers<0.0.26",
"--index-url",
"https://download.pytorch.org/whl/cu121"
])
# Pip install unsloth from GitHub
run_command([
"pip",
"install",
"unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git"
])
import os
HF_TOKEN = os.environ["HF_TOKEN"]
import re
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
# from peft import PeftModel, PeftConfig
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_00")
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.float16)
# config=AutoConfig.from_pretrained("FlawedLLM/Bhashini_00")
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_00",
# device_map="auto",
# quantization_config=quantization_config,
# torch_dtype =torch.float16,
# low_cpu_mem_usage=True,
# use_safetensors=True,
# )
# # Assuming you have your HF repository in this format: "your_username/your_model_name"
# model_id = "FlawedLLM/BhashiniLLM"
# # Load the base model (the one you fine-tuned with LoRA)
# base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto') # Load in 8-bit for efficiency
# for param in base_model.parameters():
# param.data = param.data.to(torch.float16) # or torch.float32
# # Load the LoRA adapter weights
# model = PeftModel.from_pretrained(base_model, model_id)
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# model = AutoModel.from_pretrained("FlawedLLM/Bhashini", load_in_4bit=True, device_map='auto')
# I highly do NOT suggest - use Unsloth if possible
# from peft import AutoPeftModelForCausalLM
# from transformers import AutoTokenizer
# model = AutoPeftModelForCausalLM.from_pretrained(
# "FlawedLLM/Bhashini", # YOUR MODEL YOU USED FOR TRAINING
# load_in_4bit = True,
# )
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini")
# # Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_9")
# config = AutoConfig.from_pretrained("FlawedLLM/Bhashini_9") # Load configuration
# # quantization_config = BitsAndBytesConfig(
# # load_in_4bit=True,
# # bnb_4bit_use_double_quant=True,
# # bnb_4bit_quant_type="nf4",
# # bnb_4bit_compute_dtype=torch.float16
# # )
# # torch_dtype =torch.float16
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_9",config=config, ignore_mismatched_sizes=True).to('cuda')
# Load model directly
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini89", trust_remote_code=True)
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.float16)
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini89",
# device_map="auto",
# quantization_config=quantization_config,
# torch_dtype =torch.float16,
# low_cpu_mem_usage=True,
# use_safetensors=True,
# trust_remote_code=True)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "FlawedLLM/Bhashini_gemma_lora_clean_final", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = You MUST copy from above!
@spaces.GPU(duration=300)
def chunk_it(input_command, item_list):
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
if item_list is not None:
item_list = f'''The ItemName should be chosen from the given list : {item_list} , except when adding item. If ItemName does not find anything SIMILAR in the list, then the ItemName should be "Null" '''
inputs = tokenizer(
[
alpaca_prompt.format(
f'''
You will receive text input that you need to analyze to perform the following tasks:
transaction: Record the details of an item transaction.
last n days transactions: Retrieve transaction records for a specified time period.
view risk inventory: View inventory items based on a risk category.
view inventory: View inventory details.
new items: Add new items to the inventory.
old items: View old items in inventory.
report generation: Generate various inventory reports.
Required Parameters:
Each task requires specific parameters to execute correctly:
transaction:
ItemName (string)
ItemQt (quantity - integer)
Type (string: "sale" or "purchase" or "return")
ShelfNo (string or integer)
ReorderPoint (integer)
last n days transactions:
ItemName (string)
Duration (integer: number of days)
view risk inventory:
RiskType (string: "overstock", "understock", or Null for all risk types)
view inventory:
ItemName (string)
ShelfNo (string or integer)
new items:
ItemName (string)
SellingPrice (number)
CostPrice (number)
old items:
ShelfNo (string or integer)
report generation:
ItemName (string)
Duration (integer: number of days)
ReportType (string: "profit", "revenue", "inventory", or Null for all reports)
{item_list}
ALWAYS provide output in a JSON format.''', # instruction
input_command, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True)
tokenizer.batch_decode(outputs)
reply=tokenizer.batch_decode(outputs)
# Regular expression pattern to match content between "### Response:" and "<|end_of_text|>"
pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
# Search for the pattern in the text
match = re.search(pattern, reply[0], re.DOTALL) # re.DOTALL allows '.' to match newlines
reply = match.group(1).strip() # Extract and remove extra whitespace
return reply
# iface=gr.Interface(fn=chunk_it,
# inputs="text",
# inputs="text",
# outputs="text",
# title="Formatter_Pro",
# )
iface = gr.Interface(
fn=chunk_it,
inputs=[
gr.Textbox(label="Input Command", lines=3),
gr.Textbox(label="Item List", lines=5)
],
outputs="text",
title="Formatter Pro",
)
iface.launch(inline=False)