Spaces:
Sleeping
Sleeping
File size: 1,466 Bytes
70b5cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import pipeline
import datetime
# Load the Hugging Face model for weather prediction
model = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
def predict_weather(description):
# Use the Hugging Face model to predict the weather sentiment
prediction = model(description)[0]
# Map the sentiment prediction to weather categories
if prediction['label'] == 'positive':
weather = 'Sunny'
elif prediction['label'] == 'negative':
weather = 'Rainy'
else:
weather = 'Neutral'
# Calculate tomorrow's date
tomorrow = datetime.date.today() + datetime.timedelta(days=1)
# Return the predicted weather and tomorrow's date
return weather, tomorrow
# Define the input field for the Gradio interface
description_input = gr.inputs.Textbox(label="Weather Description")
# Define the output fields for the Gradio interface
weather_output = gr.outputs.Textbox(label="Predicted Weather")
date_output = gr.outputs.Textbox(label="Tomorrow's Date")
# Create the Gradio interface
interface = gr.Interface(fn=predict_weather,
inputs=description_input,
outputs=[weather_output, date_output],
title="Tomorrow's Weather Prediction",
description="Predict tomorrow's weather based on description.")
# Launch the Gradio interface
interface.launch()
|