|
import psutil |
|
from transformers import ( |
|
AutoConfig, |
|
T5ForConditionalGeneration, |
|
MT5ForConditionalGeneration, |
|
) |
|
import torch |
|
import time |
|
import gradio as gr |
|
from transformers import AutoTokenizer |
|
import onnxruntime as ort |
|
from transformers.modeling_outputs import ( |
|
Seq2SeqLMOutput, |
|
BaseModelOutput, |
|
) |
|
import os |
|
from pathlib import Path |
|
from progress.bar import Bar |
|
import operator |
|
import functools |
|
from onnxruntime import ( |
|
GraphOptimizationLevel, |
|
InferenceSession, |
|
SessionOptions, |
|
ExecutionMode, |
|
) |
|
_auth_token = None |
|
|
|
|
|
def set_auth_token(token): |
|
"""Set the token which allows the user to authenticate to hugginface.co for downloading private models |
|
|
|
Args: |
|
token (Union[str, bool]): The token value to store. One of: |
|
- an API key (from https://huggingface.co/organizations/ORGNAME/settings/token), |
|
- a login token obtained by running `$ transformers-cli login` |
|
- `True`, which tells transformers to use the login token stored in ~/.huggingface/token |
|
|
|
Returns: |
|
None |
|
""" |
|
global _auth_token |
|
_auth_token = token |
|
|
|
|
|
def get_auth_token(): |
|
"""Get the user-configurable auth token, which defaults to None |
|
|
|
Returns: |
|
auth_token (Optional[Union[str, bool]]) for authenticating with huggingface.co |
|
""" |
|
global _auth_token |
|
return _auth_token |
|
|
|
|
|
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=True)) |
|
os.environ["OMP_WAIT_POLICY"] = "ACTIVE" |
|
|
|
|
|
def get_onnx_runtime_sessions( |
|
model_paths, |
|
default: bool = True, |
|
opt_level: int = 99, |
|
parallel_exe_mode: bool = True, |
|
n_threads: int = 0, |
|
provider=[ |
|
"CPUExecutionProvider", |
|
], |
|
) -> InferenceSession: |
|
""" |
|
Optimizes the model |
|
|
|
Args: |
|
model_paths (List or Tuple of str) : the path to, in order: |
|
path_to_encoder (str) : the path of input onnx encoder model. |
|
path_to_decoder (str) : the path of input onnx decoder model. |
|
path_to_initial_decoder (str) : the path of input initial onnx decoder model. |
|
default : set this to true, ort will choose the best settings for your hardware. |
|
(you can test out different settings for better results.) |
|
opt_level (int) : sess_options.GraphOptimizationLevel param if set 1 uses 'ORT_ENABLE_BASIC', |
|
2 for 'ORT_ENABLE_EXTENDED' and 99 for 'ORT_ENABLE_ALL', |
|
default value is set to 99. |
|
parallel_exe_mode (bool) : Sets the execution mode. Default is True (parallel). |
|
n_threads (int) : Sets the number of threads used to parallelize the execution within nodes. Default is 0 to let onnxruntime choose |
|
provider : execution providers list. |
|
|
|
Returns: |
|
encoder_session : encoder onnx InferenceSession |
|
decoder_session : decoder onnx InferenceSession |
|
decoder_sess_init : initial decoder onnx InferenceSession |
|
|
|
""" |
|
path_to_encoder, path_to_decoder, path_to_initial_decoder = model_paths |
|
|
|
if default: |
|
|
|
encoder_sess = InferenceSession(str(path_to_encoder)) |
|
|
|
decoder_sess = InferenceSession(str(path_to_decoder)) |
|
|
|
decoder_sess_init = InferenceSession(str(path_to_initial_decoder)) |
|
|
|
else: |
|
|
|
|
|
options = SessionOptions() |
|
|
|
if opt_level == 1: |
|
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC |
|
elif opt_level == 2: |
|
options.graph_optimization_level = ( |
|
GraphOptimizationLevel.ORT_ENABLE_EXTENDED |
|
) |
|
else: |
|
assert opt_level == 99 |
|
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL |
|
|
|
|
|
if parallel_exe_mode == True: |
|
options.execution_mode = ExecutionMode.ORT_PARALLEL |
|
else: |
|
options.execution_mode = ExecutionMode.ORT_SEQUENTIAL |
|
|
|
options.intra_op_num_threads = n_threads |
|
|
|
|
|
|
|
|
|
encoder_sess = InferenceSession( |
|
str(path_to_encoder), options, providers=provider |
|
) |
|
|
|
decoder_sess = InferenceSession( |
|
str(path_to_decoder), options, providers=provider |
|
) |
|
|
|
decoder_sess_init = InferenceSession( |
|
str(path_to_initial_decoder), options, providers=provider |
|
) |
|
|
|
return encoder_sess, decoder_sess, decoder_sess_init |
|
|
|
|
|
class DecoderWithLMhead(torch.nn.Module): |
|
""" Creation of a class to combine the decoder and the lm head """ |
|
|
|
def __init__(self, decoder, lm_head, config): |
|
super().__init__() |
|
self.decoder = decoder |
|
self.lm_head = lm_head |
|
self.config = config |
|
|
|
def forward(self, *inputs): |
|
|
|
input_ids, attention_mask, encoder_hidden_states = inputs[:3] |
|
|
|
list_pkv = inputs[3:] |
|
past_key_values = tuple(list_pkv[i: i + 4] |
|
for i in range(0, len(list_pkv), 4)) |
|
|
|
decoder_output = self.decoder( |
|
input_ids=input_ids, |
|
encoder_attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
lm_head_out = self.lm_head( |
|
decoder_output[0] * (self.config.d_model ** -0.5)) |
|
|
|
return lm_head_out, decoder_output[1] |
|
|
|
|
|
class T5Encoder(torch.nn.Module): |
|
""" Creation of a class to output only the last hidden state from the encoder """ |
|
|
|
def __init__(self, encoder): |
|
super().__init__() |
|
self.encoder = encoder |
|
|
|
def forward(self, *input, **kwargs): |
|
return self.encoder(*input, **kwargs)[0] |
|
|
|
|
|
class DecoderWithLMheadInitial(torch.nn.Module): |
|
""" Creation of a class to combine the decoder and the lm head """ |
|
|
|
def __init__(self, decoder, lm_head, config): |
|
super().__init__() |
|
self.decoder = decoder |
|
self.lm_head = lm_head |
|
self.config = config |
|
|
|
def forward(self, input_ids, attention_mask, encoder_hidden_states): |
|
decoder_output = self.decoder( |
|
input_ids=input_ids, |
|
encoder_attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
return ( |
|
self.lm_head(decoder_output[0] * (self.config.d_model ** -0.5)), |
|
decoder_output[1], |
|
) |
|
|
|
|
|
_folder = Path.cwd() |
|
saved_models_path = _folder.joinpath("models") |
|
|
|
Bar.check_tty = False |
|
|
|
|
|
def create_t5_encoder_decoder(pretrained_version="t5-base"): |
|
"""Generates an encoder and a decoder model with a language model head from a pretrained huggingface model |
|
|
|
Args: |
|
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5 |
|
|
|
Returns: |
|
simplified_encoder: pytorch t5 encoder with a wrapper to output only the hidden states |
|
decoder_with_lm_head: pytorch t5 decoder with a language modeling head |
|
""" |
|
|
|
if 'mt5' in pretrained_version: |
|
model = MT5ForConditionalGeneration.from_pretrained( |
|
pretrained_version, use_auth_token=get_auth_token()) |
|
else: |
|
model = T5ForConditionalGeneration.from_pretrained( |
|
pretrained_version, use_auth_token=get_auth_token()) |
|
|
|
return turn_model_into_encoder_decoder(model) |
|
|
|
|
|
def turn_model_into_encoder_decoder(model): |
|
encoder = model.encoder |
|
decoder = model.decoder |
|
lm_head = model.lm_head |
|
|
|
decoder_with_lm_head = DecoderWithLMhead(decoder, lm_head, model.config) |
|
simplified_encoder = T5Encoder(encoder) |
|
decoder_with_lm_head_init = DecoderWithLMheadInitial( |
|
decoder, lm_head, model.config) |
|
|
|
return simplified_encoder, decoder_with_lm_head, decoder_with_lm_head_init |
|
|
|
|
|
def generate_onnx_representation( |
|
pretrained_version=None, |
|
model=None, |
|
output_path=None, |
|
input_sequence_length=256, |
|
onnx_opset_version=12, |
|
): |
|
"""Exports a given huggingface pretrained model, or a given model and tokenizer, to onnx |
|
|
|
Args: |
|
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5 |
|
output_path (Optional[str]): if missing then use ./models |
|
input_sequence_length (Optional[int]): typical input sequence length, for use by the ORT for possible optimization |
|
onnx_opset_version (Optional[int]): ONNX Operator Set Version, default 12 is the only tested version |
|
""" |
|
if (pretrained_version is None) and model is None: |
|
print( |
|
"You need to specify pretrained_version (the pretrained model you wish to export). Alternatively you can export a model you have in memory." |
|
) |
|
return |
|
|
|
if model is not None: |
|
( |
|
simplified_encoder, |
|
decoder_with_lm_head, |
|
decoder_with_lm_head_init, |
|
) = turn_model_into_encoder_decoder(model) |
|
else: |
|
( |
|
simplified_encoder, |
|
decoder_with_lm_head, |
|
decoder_with_lm_head_init, |
|
) = create_t5_encoder_decoder(pretrained_version) |
|
|
|
|
|
output_path = saved_models_path if output_path is None else Path( |
|
output_path) |
|
encoder_path, decoder_path, init_decoder_path = get_model_paths( |
|
pretrained_version, output_path, quantized=False |
|
) |
|
|
|
model_config = AutoConfig.from_pretrained( |
|
pretrained_version, use_auth_token=get_auth_token()) |
|
|
|
|
|
|
|
batch_size = 1 |
|
enc_seq_length = input_sequence_length |
|
|
|
dec_seq_length = 1 |
|
input_ids = torch.ones(batch_size, enc_seq_length, dtype=torch.int64) |
|
attention_mask = torch.ones(batch_size, enc_seq_length, dtype=torch.int64) |
|
|
|
n_heads = model_config.num_heads |
|
d_kv = model_config.d_kv |
|
|
|
input_ids_dec = torch.ones(batch_size, dec_seq_length, dtype=torch.int64) |
|
attention_mask_dec = torch.ones( |
|
batch_size, dec_seq_length, dtype=torch.int64) |
|
enc_out = torch.ones( |
|
(batch_size, enc_seq_length, model_config.d_model), dtype=torch.float32 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
sa = torch.ones( |
|
(batch_size, n_heads, dec_seq_length, d_kv), dtype=torch.float32 |
|
) |
|
ca = torch.ones( |
|
(batch_size, n_heads, enc_seq_length, d_kv), dtype=torch.float32 |
|
) |
|
t5_block = (sa, sa, ca, ca) |
|
past_key_values = (t5_block,) * model_config.num_decoder_layers |
|
|
|
flat_past_key_values = functools.reduce( |
|
operator.iconcat, past_key_values, []) |
|
|
|
decoder_all_inputs = tuple( |
|
[input_ids_dec, attention_mask_dec, enc_out] + flat_past_key_values |
|
) |
|
|
|
|
|
bar = Bar("Exporting to onnx...", max=3) |
|
|
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
decoder_inputs = [ |
|
"input_ids", |
|
"encoder_attention_mask", |
|
"encoder_hidden_states", |
|
] |
|
|
|
pkv_input_names = ["pkv_{}".format( |
|
i) for i in range(len(flat_past_key_values))] |
|
|
|
decoder_input_names = decoder_inputs + pkv_input_names |
|
|
|
decoder_output_names = ["logits", "output_past_key_values"] |
|
|
|
dyn_axis_general = {0: "batch", 1: "sequence"} |
|
dyn_axis_pkv = {0: "batch", 2: "seq_length"} |
|
|
|
dyn_axis = { |
|
"input_ids": dyn_axis_general, |
|
"encoder_attention_mask": dyn_axis_general, |
|
"encoder_hidden_states": dyn_axis_general, |
|
"logits": dyn_axis_general, |
|
"output_past_key_values": dyn_axis_general, |
|
} |
|
|
|
dyn_pkv = { |
|
"pkv_{}".format(i): dyn_axis_pkv |
|
for i in range(len(flat_past_key_values)) |
|
} |
|
|
|
dyn_axis_params = {**dyn_axis, **dyn_pkv} |
|
|
|
|
|
torch.onnx.export( |
|
decoder_with_lm_head, |
|
decoder_all_inputs, |
|
decoder_path.as_posix(), |
|
export_params=True, |
|
do_constant_folding=True, |
|
opset_version=onnx_opset_version, |
|
input_names=decoder_input_names, |
|
output_names=decoder_output_names, |
|
dynamic_axes=dyn_axis_params, |
|
) |
|
bar.next() |
|
|
|
torch.onnx.export( |
|
simplified_encoder, |
|
args=(input_ids, attention_mask), |
|
f=encoder_path.as_posix(), |
|
export_params=True, |
|
opset_version=onnx_opset_version, |
|
do_constant_folding=True, |
|
input_names=["input_ids", "attention_mask"], |
|
output_names=["hidden_states"], |
|
dynamic_axes={ |
|
"input_ids": dyn_axis_general, |
|
"attention_mask": dyn_axis_general, |
|
"hidden_states": dyn_axis_general, |
|
}, |
|
) |
|
bar.next() |
|
|
|
torch.onnx.export( |
|
decoder_with_lm_head_init, |
|
(input_ids_dec, attention_mask_dec, enc_out), |
|
init_decoder_path.as_posix(), |
|
export_params=True, |
|
opset_version=onnx_opset_version, |
|
input_names=[ |
|
"input_ids", |
|
"encoder_attention_mask", |
|
"encoder_hidden_states", |
|
], |
|
output_names=["logits", "past_key_values"], |
|
dynamic_axes={ |
|
|
|
"input_ids": dyn_axis_general, |
|
"encoder_attention_mask": dyn_axis_general, |
|
"encoder_hidden_states": dyn_axis_general, |
|
"logits": dyn_axis_general, |
|
"past_key_values": dyn_axis_general, |
|
}, |
|
) |
|
bar.next() |
|
bar.finish() |
|
|
|
return encoder_path, decoder_path, init_decoder_path |
|
|
|
|
|
def get_model_paths(pretrained_model, model_path, quantized): |
|
|
|
model_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
pretrained_model_name = Path(pretrained_model).stem |
|
|
|
if not quantized: |
|
encoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-encoder.onnx") |
|
decoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-decoder.onnx") |
|
init_decoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-init-decoder.onnx" |
|
) |
|
else: |
|
encoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-encoder-quantized.onnx" |
|
) |
|
decoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-decoder-quantized.onnx" |
|
) |
|
init_decoder_path = model_path.joinpath( |
|
f"{pretrained_model_name}-init-decoder-quantized.onnx" |
|
) |
|
|
|
return encoder_path, decoder_path, init_decoder_path |
|
|
|
|
|
def quantize(models_name_or_path): |
|
""" |
|
Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU |
|
|
|
Uses unsigned ints for activation values, signed ints for weights, per |
|
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection |
|
it is faster on most CPU architectures |
|
Args: |
|
onnx_model_path: Path to location the exported ONNX model is stored |
|
Returns: The Path generated for the quantized |
|
""" |
|
from onnxruntime.quantization import quantize_dynamic, QuantType |
|
|
|
bar = Bar("Quantizing...", max=3) |
|
|
|
quant_model_paths = [] |
|
for model in models_name_or_path: |
|
model_name = model.as_posix() |
|
output_model_name = f"{model_name[:-5]}-quantized.onnx" |
|
quantize_dynamic( |
|
model_input=model_name, |
|
model_output=output_model_name, |
|
per_channel=True, |
|
reduce_range=True, |
|
activation_type=QuantType.QUInt8, |
|
weight_type=QuantType.QInt8, |
|
optimize_model=False, |
|
) |
|
quant_model_paths.append(output_model_name) |
|
bar.next() |
|
|
|
bar.finish() |
|
|
|
return tuple(quant_model_paths) |
|
|
|
|
|
class T5Encoder(torch.nn.Module): |
|
def __init__(self, encoder_sess): |
|
super().__init__() |
|
self.encoder = encoder_sess |
|
self.main_input_name = "input_ids" |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
encoder_hidden_state = torch.from_numpy( |
|
self.encoder.run( |
|
None, |
|
{ |
|
"input_ids": input_ids.cpu().numpy(), |
|
"attention_mask": attention_mask.cpu().numpy(), |
|
}, |
|
)[0] |
|
) |
|
|
|
return BaseModelOutput(encoder_hidden_state) |
|
|
|
|
|
class T5DecoderInit(torch.nn.Module): |
|
def __init__(self, decoder_sess): |
|
super().__init__() |
|
self.decoder = decoder_sess |
|
|
|
def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states): |
|
|
|
decoder_outputs = self.decoder.run( |
|
None, |
|
{ |
|
"input_ids": input_ids.cpu().numpy(), |
|
"encoder_attention_mask": encoder_attention_mask.cpu().numpy(), |
|
"encoder_hidden_states": encoder_hidden_states.cpu().numpy(), |
|
}, |
|
) |
|
|
|
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:]) |
|
|
|
out_past_key_values = tuple( |
|
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4) |
|
) |
|
|
|
return torch.from_numpy(decoder_outputs[0]), out_past_key_values |
|
|
|
|
|
class T5Decoder(torch.nn.Module): |
|
def __init__(self, decoder_sess): |
|
super().__init__() |
|
self.decoder = decoder_sess |
|
|
|
def forward(self, input_ids, attention_mask, encoder_output, past_key_values): |
|
|
|
decoder_inputs = { |
|
"input_ids": input_ids.cpu().numpy(), |
|
"encoder_attention_mask": attention_mask.cpu().numpy(), |
|
"encoder_hidden_states": encoder_output.cpu().numpy(), |
|
} |
|
|
|
flat_past_key_values = functools.reduce( |
|
operator.iconcat, past_key_values, []) |
|
|
|
past_key_values = { |
|
f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values) |
|
} |
|
|
|
decoder_outputs = self.decoder.run( |
|
None, {**decoder_inputs, **past_key_values}) |
|
|
|
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:]) |
|
|
|
|
|
out_past_key_values = tuple( |
|
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4) |
|
) |
|
|
|
return torch.from_numpy(decoder_outputs[0]), out_past_key_values |
|
|
|
|
|
class OnnxT5(T5ForConditionalGeneration): |
|
"""creates a T5 model using onnx sessions (encode, decoder & init_decoder)""" |
|
|
|
def __init__(self, model_or_model_path, onnx_model_sessions): |
|
config = AutoConfig.from_pretrained( |
|
model_or_model_path, use_auth_token=get_auth_token() |
|
) |
|
super().__init__(config) |
|
|
|
|
|
if ( |
|
isinstance(model_or_model_path, str) |
|
and "mt5" in model_or_model_path.lower() |
|
) or ( |
|
hasattr(model_or_model_path, "name_or_path") |
|
and "mt5" in model_or_model_path.name_or_path |
|
): |
|
self.model_type = "mt5" |
|
self.config_class = MT5Config |
|
self._keys_to_ignore_on_load_missing = [ |
|
r"encoder\.embed_tokens\.weight", |
|
] |
|
self._keys_to_ignore_on_save = [ |
|
r"encoder\.embed_tokens\.weight", |
|
] |
|
|
|
assert len(onnx_model_sessions) == 3, "all three models should be given" |
|
|
|
encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions |
|
|
|
self.encoder = T5Encoder(encoder_sess) |
|
self.decoder = T5Decoder(decoder_sess) |
|
self.decoder_init = T5DecoderInit(decoder_sess_init) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
encoder_outputs=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
decoder_inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
) |
|
|
|
encoder_hidden_states = encoder_outputs[0] |
|
|
|
if past_key_values is not None: |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids[:, -1:] |
|
if decoder_inputs_embeds is not None: |
|
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:] |
|
|
|
if past_key_values is None: |
|
|
|
|
|
init_onnx_outputs = self.decoder_init( |
|
decoder_input_ids, attention_mask, encoder_hidden_states |
|
) |
|
|
|
logits, past_key_values = init_onnx_outputs |
|
|
|
else: |
|
|
|
onnx_outputs = self.decoder( |
|
decoder_input_ids, |
|
attention_mask, |
|
encoder_hidden_states, |
|
past_key_values, |
|
) |
|
|
|
logits, past_key_values = onnx_outputs |
|
|
|
return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values) |
|
|
|
|
|
def export_and_get_onnx_model( |
|
model_or_model_path, custom_output_path=saved_models_path, quantized=True |
|
): |
|
""" |
|
Method for whole pipeline, |
|
converts from pytorch to onnx --> quantizes model --> sets onnx runtime |
|
--> builds whole onnx model with all sessions |
|
|
|
""" |
|
|
|
|
|
onnx_model_paths = generate_onnx_representation( |
|
model_or_model_path, output_path=custom_output_path |
|
) |
|
|
|
if quantized: |
|
|
|
quant_model_paths = quantize(onnx_model_paths) |
|
|
|
|
|
print("Setting up onnx model...") |
|
model_sessions = get_onnx_runtime_sessions(quant_model_paths) |
|
else: |
|
print("Setting up onnx model...") |
|
model_sessions = get_onnx_runtime_sessions(onnx_model_paths) |
|
|
|
|
|
model = OnnxT5(model_or_model_path, model_sessions) |
|
print("Done!") |
|
|
|
return model |
|
|
|
|
|
def get_onnx_model(model_name, onnx_models_path=saved_models_path, quantized=True): |
|
""" |
|
method gets the onnx model, if already converted models exists |
|
Example: |
|
>> get_onnx_model(model_name="t5-finetuned", onnx_models_path="../models/onnx/quantized/") |
|
|
|
""" |
|
|
|
encoder_path, decoder_path, init_decoder_path = get_model_paths( |
|
model_name, Path(onnx_models_path), quantized |
|
) |
|
|
|
if quantized: |
|
assert ( |
|
encoder_path.exists() |
|
and decoder_path.exists() |
|
and init_decoder_path.exists() |
|
), "quantized model don't exist in the model folder, first quantize the model!" |
|
else: |
|
assert ( |
|
encoder_path.exists() |
|
and decoder_path.exists() |
|
and init_decoder_path.exists() |
|
), "all or some models don't exists in the model folder, first convert the model! " |
|
|
|
model_paths = encoder_path, decoder_path, init_decoder_path |
|
|
|
model_sessions = get_onnx_runtime_sessions(model_paths) |
|
|
|
model = OnnxT5(model_name, model_sessions) |
|
|
|
return model |
|
|
|
|
|
trained_model_path = './t5_squad_v1/' |
|
|
|
pretrained_model_name = Path(trained_model_path).stem |
|
|
|
encoder_path = os.path.join( |
|
trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx") |
|
decoder_path = os.path.join( |
|
trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx") |
|
init_decoder_path = os.path.join( |
|
trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx") |
|
|
|
model_paths = encoder_path, decoder_path, init_decoder_path |
|
model_sessions = get_onnx_runtime_sessions(model_paths) |
|
model = OnnxT5(trained_model_path, model_sessions) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(trained_model_path) |
|
|
|
|
|
def get_question(sentence, answer, mdl, tknizer): |
|
text = "context: {} answer: {}".format(sentence, answer) |
|
print(text) |
|
max_len = 256 |
|
encoding = tknizer.encode_plus( |
|
text, max_length=max_len, pad_to_max_length=False, truncation=True, return_tensors="pt") |
|
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"] |
|
outs = mdl.generate(input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
early_stopping=True, |
|
num_beams=5, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
max_length=300) |
|
|
|
dec = [tknizer.decode(ids, skip_special_tokens=True) for ids in outs] |
|
|
|
Question = dec[0].replace("question:", "") |
|
Ouestion = Question.strip() |
|
return Question |
|
|
|
|
|
|
|
|
|
context = "Donald Trump is an American media personality and businessman who served as the 45th president of the United States." |
|
answer = "Donald Trump" |
|
ques = get_question(context, answer, model, tokenizer) |
|
print("question: ", ques) |
|
|
|
|
|
context = gr.components.Textbox( |
|
lines=5, placeholder="Enter paragraph/context here...") |
|
answer = gr.components.Textbox( |
|
lines=3, placeholder="Enter answer/keyword here...") |
|
question = gr.components.Textbox(type="text", label="Question") |
|
|
|
|
|
def generate_question(context, answer): |
|
start_time = time.time() |
|
result = get_question(context, answer, model, tokenizer) |
|
end_time = time.time() |
|
latency = end_time - start_time |
|
print(f"Latency: {latency} seconds") |
|
return result |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_question, |
|
inputs=[context, answer], |
|
outputs=question |
|
) |
|
|
|
iface.launch() |
|
|