questgen / app.py
ViXuan's picture
Update app.py
883c203
raw
history blame
27.1 kB
import psutil
from transformers import (
AutoConfig,
T5ForConditionalGeneration,
MT5ForConditionalGeneration,
)
import torch
import time
import gradio as gr
from transformers import AutoTokenizer
import onnxruntime as ort
from transformers.modeling_outputs import (
Seq2SeqLMOutput,
BaseModelOutput,
)
import os
from pathlib import Path
from progress.bar import Bar
import operator
import functools
from onnxruntime import (
GraphOptimizationLevel,
InferenceSession,
SessionOptions,
ExecutionMode,
)
_auth_token = None
def set_auth_token(token):
"""Set the token which allows the user to authenticate to hugginface.co for downloading private models
Args:
token (Union[str, bool]): The token value to store. One of:
- an API key (from https://huggingface.co/organizations/ORGNAME/settings/token),
- a login token obtained by running `$ transformers-cli login`
- `True`, which tells transformers to use the login token stored in ~/.huggingface/token
Returns:
None
"""
global _auth_token
_auth_token = token
def get_auth_token():
"""Get the user-configurable auth token, which defaults to None
Returns:
auth_token (Optional[Union[str, bool]]) for authenticating with huggingface.co
"""
global _auth_token
return _auth_token
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=True))
os.environ["OMP_WAIT_POLICY"] = "ACTIVE"
def get_onnx_runtime_sessions(
model_paths,
default: bool = True,
opt_level: int = 99,
parallel_exe_mode: bool = True,
n_threads: int = 0,
provider=[
"CPUExecutionProvider",
],
) -> InferenceSession:
"""
Optimizes the model
Args:
model_paths (List or Tuple of str) : the path to, in order:
path_to_encoder (str) : the path of input onnx encoder model.
path_to_decoder (str) : the path of input onnx decoder model.
path_to_initial_decoder (str) : the path of input initial onnx decoder model.
default : set this to true, ort will choose the best settings for your hardware.
(you can test out different settings for better results.)
opt_level (int) : sess_options.GraphOptimizationLevel param if set 1 uses 'ORT_ENABLE_BASIC',
2 for 'ORT_ENABLE_EXTENDED' and 99 for 'ORT_ENABLE_ALL',
default value is set to 99.
parallel_exe_mode (bool) : Sets the execution mode. Default is True (parallel).
n_threads (int) : Sets the number of threads used to parallelize the execution within nodes. Default is 0 to let onnxruntime choose
provider : execution providers list.
Returns:
encoder_session : encoder onnx InferenceSession
decoder_session : decoder onnx InferenceSession
decoder_sess_init : initial decoder onnx InferenceSession
"""
path_to_encoder, path_to_decoder, path_to_initial_decoder = model_paths
if default:
encoder_sess = InferenceSession(str(path_to_encoder))
decoder_sess = InferenceSession(str(path_to_decoder))
decoder_sess_init = InferenceSession(str(path_to_initial_decoder))
else:
# Few properties that might have an impact on performances
options = SessionOptions()
if opt_level == 1:
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
elif opt_level == 2:
options.graph_optimization_level = (
GraphOptimizationLevel.ORT_ENABLE_EXTENDED
)
else:
assert opt_level == 99
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
# set this true for better performance
if parallel_exe_mode == True:
options.execution_mode = ExecutionMode.ORT_PARALLEL
else:
options.execution_mode = ExecutionMode.ORT_SEQUENTIAL
options.intra_op_num_threads = n_threads
# options.inter_op_num_threads = 10
# options.enable_profiling = True
encoder_sess = InferenceSession(
str(path_to_encoder), options, providers=provider
)
decoder_sess = InferenceSession(
str(path_to_decoder), options, providers=provider
)
decoder_sess_init = InferenceSession(
str(path_to_initial_decoder), options, providers=provider
)
return encoder_sess, decoder_sess, decoder_sess_init
class DecoderWithLMhead(torch.nn.Module):
""" Creation of a class to combine the decoder and the lm head """
def __init__(self, decoder, lm_head, config):
super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.config = config
def forward(self, *inputs):
input_ids, attention_mask, encoder_hidden_states = inputs[:3]
list_pkv = inputs[3:]
past_key_values = tuple(list_pkv[i: i + 4]
for i in range(0, len(list_pkv), 4))
decoder_output = self.decoder(
input_ids=input_ids, # decoder_input_ids
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
past_key_values=past_key_values,
)
lm_head_out = self.lm_head(
decoder_output[0] * (self.config.d_model ** -0.5))
return lm_head_out, decoder_output[1]
class T5Encoder(torch.nn.Module):
""" Creation of a class to output only the last hidden state from the encoder """
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, *input, **kwargs):
return self.encoder(*input, **kwargs)[0]
class DecoderWithLMheadInitial(torch.nn.Module):
""" Creation of a class to combine the decoder and the lm head """
def __init__(self, decoder, lm_head, config):
super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.config = config
def forward(self, input_ids, attention_mask, encoder_hidden_states):
decoder_output = self.decoder(
input_ids=input_ids,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
)
return (
self.lm_head(decoder_output[0] * (self.config.d_model ** -0.5)),
decoder_output[1],
)
_folder = Path.cwd()
saved_models_path = _folder.joinpath("models")
Bar.check_tty = False
def create_t5_encoder_decoder(pretrained_version="t5-base"):
"""Generates an encoder and a decoder model with a language model head from a pretrained huggingface model
Args:
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5
Returns:
simplified_encoder: pytorch t5 encoder with a wrapper to output only the hidden states
decoder_with_lm_head: pytorch t5 decoder with a language modeling head
"""
if 'mt5' in pretrained_version:
model = MT5ForConditionalGeneration.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
else:
model = T5ForConditionalGeneration.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
return turn_model_into_encoder_decoder(model)
def turn_model_into_encoder_decoder(model):
encoder = model.encoder
decoder = model.decoder
lm_head = model.lm_head
decoder_with_lm_head = DecoderWithLMhead(decoder, lm_head, model.config)
simplified_encoder = T5Encoder(encoder)
decoder_with_lm_head_init = DecoderWithLMheadInitial(
decoder, lm_head, model.config)
return simplified_encoder, decoder_with_lm_head, decoder_with_lm_head_init
def generate_onnx_representation(
pretrained_version=None,
model=None,
output_path=None,
input_sequence_length=256,
onnx_opset_version=12, # no other opset versions are tested, change at your own risk
):
"""Exports a given huggingface pretrained model, or a given model and tokenizer, to onnx
Args:
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5
output_path (Optional[str]): if missing then use ./models
input_sequence_length (Optional[int]): typical input sequence length, for use by the ORT for possible optimization
onnx_opset_version (Optional[int]): ONNX Operator Set Version, default 12 is the only tested version
"""
if (pretrained_version is None) and model is None:
print(
"You need to specify pretrained_version (the pretrained model you wish to export). Alternatively you can export a model you have in memory."
)
return
if model is not None:
(
simplified_encoder,
decoder_with_lm_head,
decoder_with_lm_head_init,
) = turn_model_into_encoder_decoder(model)
else:
(
simplified_encoder,
decoder_with_lm_head,
decoder_with_lm_head_init,
) = create_t5_encoder_decoder(pretrained_version)
# model paths for enc, dec and dec_init
output_path = saved_models_path if output_path is None else Path(
output_path)
encoder_path, decoder_path, init_decoder_path = get_model_paths(
pretrained_version, output_path, quantized=False
)
model_config = AutoConfig.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
# Though these are dummy inputs, ORT optimizations do reference these values,
# so it is worth using values as close to production as possible
batch_size = 1 # not configurable since only CPU
enc_seq_length = input_sequence_length
# a decoder sequence length is always one because it's just the last generated token
dec_seq_length = 1
input_ids = torch.ones(batch_size, enc_seq_length, dtype=torch.int64)
attention_mask = torch.ones(batch_size, enc_seq_length, dtype=torch.int64)
n_heads = model_config.num_heads
d_kv = model_config.d_kv
input_ids_dec = torch.ones(batch_size, dec_seq_length, dtype=torch.int64)
attention_mask_dec = torch.ones(
batch_size, dec_seq_length, dtype=torch.int64)
enc_out = torch.ones(
(batch_size, enc_seq_length, model_config.d_model), dtype=torch.float32
)
# self_attention_past_key_values = torch.ones(
# (model_config.num_decoder_layers, 2, batch_size, n_heads, seq_length_a, d_kv), dtype=torch.float32)
# cross_attention_past_key_values = torch.ones(
# (model_config.num_decoder_layers, 2, batch_size, n_heads, seq_length_b, d_kv), dtype=torch.float32)
sa = torch.ones(
(batch_size, n_heads, dec_seq_length, d_kv), dtype=torch.float32
) # 1, 8, 1, 64
ca = torch.ones(
(batch_size, n_heads, enc_seq_length, d_kv), dtype=torch.float32
) # 1, 8, variable, 64
t5_block = (sa, sa, ca, ca)
past_key_values = (t5_block,) * model_config.num_decoder_layers
flat_past_key_values = functools.reduce(
operator.iconcat, past_key_values, [])
decoder_all_inputs = tuple(
[input_ids_dec, attention_mask_dec, enc_out] + flat_past_key_values
)
# for progress bars
bar = Bar("Exporting to onnx...", max=3)
import warnings
# ignores all the warnings during conversion
warnings.filterwarnings("ignore")
# Exports to ONNX
with torch.no_grad():
decoder_inputs = [
"input_ids",
"encoder_attention_mask",
"encoder_hidden_states",
]
pkv_input_names = ["pkv_{}".format(
i) for i in range(len(flat_past_key_values))]
decoder_input_names = decoder_inputs + pkv_input_names
decoder_output_names = ["logits", "output_past_key_values"]
dyn_axis_general = {0: "batch", 1: "sequence"}
dyn_axis_pkv = {0: "batch", 2: "seq_length"}
dyn_axis = {
"input_ids": dyn_axis_general,
"encoder_attention_mask": dyn_axis_general,
"encoder_hidden_states": dyn_axis_general,
"logits": dyn_axis_general,
"output_past_key_values": dyn_axis_general,
}
dyn_pkv = {
"pkv_{}".format(i): dyn_axis_pkv
for i in range(len(flat_past_key_values))
}
dyn_axis_params = {**dyn_axis, **dyn_pkv}
# decoder to utilize past key values:
torch.onnx.export(
decoder_with_lm_head,
decoder_all_inputs,
decoder_path.as_posix(),
export_params=True,
do_constant_folding=True,
opset_version=onnx_opset_version,
input_names=decoder_input_names,
output_names=decoder_output_names,
dynamic_axes=dyn_axis_params,
)
bar.next()
torch.onnx.export(
simplified_encoder,
args=(input_ids, attention_mask),
f=encoder_path.as_posix(),
export_params=True,
opset_version=onnx_opset_version,
do_constant_folding=True,
input_names=["input_ids", "attention_mask"],
output_names=["hidden_states"],
dynamic_axes={
"input_ids": dyn_axis_general,
"attention_mask": dyn_axis_general,
"hidden_states": dyn_axis_general,
},
)
bar.next()
# initial decoder to produce past key values
torch.onnx.export(
decoder_with_lm_head_init,
(input_ids_dec, attention_mask_dec, enc_out),
init_decoder_path.as_posix(),
export_params=True,
opset_version=onnx_opset_version,
input_names=[
"input_ids",
"encoder_attention_mask",
"encoder_hidden_states",
],
output_names=["logits", "past_key_values"],
dynamic_axes={
# batch_size, seq_length = input_shape
"input_ids": dyn_axis_general,
"encoder_attention_mask": dyn_axis_general,
"encoder_hidden_states": dyn_axis_general,
"logits": dyn_axis_general,
"past_key_values": dyn_axis_general,
},
)
bar.next()
bar.finish()
return encoder_path, decoder_path, init_decoder_path
def get_model_paths(pretrained_model, model_path, quantized):
model_path.mkdir(parents=True, exist_ok=True)
# gets only the filename
pretrained_model_name = Path(pretrained_model).stem
if not quantized:
encoder_path = model_path.joinpath(
f"{pretrained_model_name}-encoder.onnx")
decoder_path = model_path.joinpath(
f"{pretrained_model_name}-decoder.onnx")
init_decoder_path = model_path.joinpath(
f"{pretrained_model_name}-init-decoder.onnx"
)
else:
encoder_path = model_path.joinpath(
f"{pretrained_model_name}-encoder-quantized.onnx"
)
decoder_path = model_path.joinpath(
f"{pretrained_model_name}-decoder-quantized.onnx"
)
init_decoder_path = model_path.joinpath(
f"{pretrained_model_name}-init-decoder-quantized.onnx"
)
return encoder_path, decoder_path, init_decoder_path
def quantize(models_name_or_path):
"""
Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU
Uses unsigned ints for activation values, signed ints for weights, per
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection
it is faster on most CPU architectures
Args:
onnx_model_path: Path to location the exported ONNX model is stored
Returns: The Path generated for the quantized
"""
from onnxruntime.quantization import quantize_dynamic, QuantType
bar = Bar("Quantizing...", max=3)
quant_model_paths = []
for model in models_name_or_path:
model_name = model.as_posix()
output_model_name = f"{model_name[:-5]}-quantized.onnx"
quantize_dynamic(
model_input=model_name,
model_output=output_model_name,
per_channel=True,
reduce_range=True, # should be the same as per_channel
activation_type=QuantType.QUInt8,
weight_type=QuantType.QInt8, # per docs, signed is faster on most CPUs
optimize_model=False,
) # op_types_to_quantize=['MatMul', 'Relu', 'Add', 'Mul' ],
quant_model_paths.append(output_model_name)
bar.next()
bar.finish()
return tuple(quant_model_paths)
class T5Encoder(torch.nn.Module):
def __init__(self, encoder_sess):
super().__init__()
self.encoder = encoder_sess
self.main_input_name = "input_ids"
def forward(
self,
input_ids,
attention_mask,
inputs_embeds=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
encoder_hidden_state = torch.from_numpy(
self.encoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"attention_mask": attention_mask.cpu().numpy(),
},
)[0]
)
return BaseModelOutput(encoder_hidden_state)
class T5DecoderInit(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states):
decoder_outputs = self.decoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": encoder_attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_hidden_states.cpu().numpy(),
},
)
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class T5Decoder(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, attention_mask, encoder_output, past_key_values):
decoder_inputs = {
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_output.cpu().numpy(),
}
flat_past_key_values = functools.reduce(
operator.iconcat, past_key_values, [])
past_key_values = {
f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values)
}
decoder_outputs = self.decoder.run(
None, {**decoder_inputs, **past_key_values})
# converts each value of the list to tensor from numpy
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
# creates a tuple of tuples of shape 6x4 from the above tuple
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class OnnxT5(T5ForConditionalGeneration):
"""creates a T5 model using onnx sessions (encode, decoder & init_decoder)"""
def __init__(self, model_or_model_path, onnx_model_sessions):
config = AutoConfig.from_pretrained(
model_or_model_path, use_auth_token=get_auth_token()
)
super().__init__(config)
# monkeypatch to work for MT5
if (
isinstance(model_or_model_path, str)
and "mt5" in model_or_model_path.lower()
) or (
hasattr(model_or_model_path, "name_or_path")
and "mt5" in model_or_model_path.name_or_path
):
self.model_type = "mt5"
self.config_class = MT5Config
self._keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
]
self._keys_to_ignore_on_save = [
r"encoder\.embed_tokens\.weight",
]
assert len(onnx_model_sessions) == 3, "all three models should be given"
encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions
self.encoder = T5Encoder(encoder_sess)
self.decoder = T5Decoder(decoder_sess)
self.decoder_init = T5DecoderInit(decoder_sess_init)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids, attention_mask=attention_mask
)
encoder_hidden_states = encoder_outputs[0]
if past_key_values is not None:
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
if past_key_values is None:
# runs only for the first time:
init_onnx_outputs = self.decoder_init(
decoder_input_ids, attention_mask, encoder_hidden_states
)
logits, past_key_values = init_onnx_outputs
else:
onnx_outputs = self.decoder(
decoder_input_ids,
attention_mask,
encoder_hidden_states,
past_key_values,
)
logits, past_key_values = onnx_outputs
return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values)
def export_and_get_onnx_model(
model_or_model_path, custom_output_path=saved_models_path, quantized=True
):
"""
Method for whole pipeline,
converts from pytorch to onnx --> quantizes model --> sets onnx runtime
--> builds whole onnx model with all sessions
"""
# Step 1. convert huggingfaces t5 model to onnx
onnx_model_paths = generate_onnx_representation(
model_or_model_path, output_path=custom_output_path
)
if quantized:
# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
quant_model_paths = quantize(onnx_model_paths)
# step 3. setup onnx runtime
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(quant_model_paths)
else:
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(onnx_model_paths)
# step 4. get the onnx model
model = OnnxT5(model_or_model_path, model_sessions)
print("Done!")
return model
def get_onnx_model(model_name, onnx_models_path=saved_models_path, quantized=True):
"""
method gets the onnx model, if already converted models exists
Example:
>> get_onnx_model(model_name="t5-finetuned", onnx_models_path="../models/onnx/quantized/")
"""
encoder_path, decoder_path, init_decoder_path = get_model_paths(
model_name, Path(onnx_models_path), quantized
)
if quantized:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "quantized model don't exist in the model folder, first quantize the model!"
else:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "all or some models don't exists in the model folder, first convert the model! "
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(model_name, model_sessions)
return model
trained_model_path = './t5_squad_v1/'
pretrained_model_name = Path(trained_model_path).stem
encoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx")
decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx")
init_decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx")
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(trained_model_path, model_sessions)
tokenizer = AutoTokenizer.from_pretrained(trained_model_path)
def get_question(sentence, answer, mdl, tknizer):
text = "context: {} answer: {}".format(sentence, answer)
print(text)
max_len = 256
encoding = tknizer.encode_plus(
text, max_length=max_len, pad_to_max_length=False, truncation=True, return_tensors="pt")
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = mdl.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=5,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=300)
dec = [tknizer.decode(ids, skip_special_tokens=True) for ids in outs]
Question = dec[0].replace("question:", "")
Ouestion = Question.strip()
return Question
# context = "Ramsri loves to watch cricket during his free time"
# answer = "cricket"
context = "Donald Trump is an American media personality and businessman who served as the 45th president of the United States."
answer = "Donald Trump"
ques = get_question(context, answer, model, tokenizer)
print("question: ", ques)
context = gr.components.Textbox(
lines=5, placeholder="Enter paragraph/context here...")
answer = gr.components.Textbox(
lines=3, placeholder="Enter answer/keyword here...")
question = gr.components.Textbox(type="text", label="Question")
def generate_question(context, answer):
start_time = time.time() # Record the start time
result = get_question(context, answer, model, tokenizer)
end_time = time.time() # Record the end time
latency = end_time - start_time # Calculate latency
print(f"Latency: {latency} seconds")
return result
iface = gr.Interface(
fn=generate_question,
inputs=[context, answer],
outputs=question
)
iface.launch()