|
import gradio as gr |
|
from PIL import Image |
|
import requests |
|
import numpy as np |
|
import urllib.request |
|
from urllib.request import urlretrieve |
|
import PIL.Image |
|
import torchvision.transforms as T |
|
import fastai |
|
from fastai.vision import * |
|
from fastai.utils.mem import * |
|
|
|
class FeatureLoss(nn.Module): |
|
def __init__(self, m_feat, layer_ids, layer_wgts): |
|
super().__init__() |
|
self.m_feat = m_feat |
|
self.loss_features = [self.m_feat[i] for i in layer_ids] |
|
self.hooks = hook_outputs(self.loss_features, detach=False) |
|
self.wgts = layer_wgts |
|
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) |
|
] + [f'gram_{i}' for i in range(len(layer_ids))] |
|
|
|
def make_features(self, x, clone=False): |
|
self.m_feat(x) |
|
return [(o.clone() if clone else o) for o in self.hooks.stored] |
|
|
|
def forward(self, input, target): |
|
out_feat = self.make_features(target, clone=True) |
|
in_feat = self.make_features(input) |
|
self.feat_losses = [base_loss(input,target)] |
|
self.feat_losses += [base_loss(f_in, f_out)*w |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.metrics = dict(zip(self.metric_names, self.feat_losses)) |
|
return sum(self.feat_losses) |
|
|
|
def __del__(self): self.hooks.remove() |
|
|
|
MODEL_URL = "https://www.dropbox.com/s/rz9nt35um1agf5y/t10T.pkl?dl=1" |
|
urllib.request.urlretrieve(MODEL_URL, "t10T.pkl") |
|
path = Path(".") |
|
learn=load_learner(path, 't10T.pkl') |
|
|
|
urlretrieve("https://s.hdnux.com/photos/01/07/33/71/18726490/5/1200x0.jpg","soccer1.jpg") |
|
urlretrieve("https://media.okmagazine.com/brand-img/IEPXUdkY7/0x0/2015/06/celebrity-tattoos-16-splash.jpg","soccer2.jpg") |
|
urlretrieve("https://newsmeter.in/wp-content/uploads/2020/06/Ajay-Devgn-Tattoo.jpg","baseball.jpg") |
|
urlretrieve("https://www.allkpop.com/upload/2022/08/content/071400/1659895247-tattoozico.jpg","baseball2.jpeg") |
|
|
|
sample_images = [["soccer1.jpg"], |
|
["soccer2.jpg"], |
|
["baseball.jpg"], |
|
["baseball2.jpeg"]] |
|
|
|
|
|
def predict(input): |
|
size = input.size |
|
img_t = T.ToTensor()(input) |
|
img_fast = Image(img_t) |
|
p,img_hr,b = learn.predict(img_fast) |
|
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) |
|
img = PIL.Image.fromarray(x) |
|
im1 = img.resize(size) |
|
return im1 |
|
|
|
gr_interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="image", title='Skin-Deep',examples=sample_images).launch(); |