Spaces:
Runtime error
Runtime error
from flask import * | |
from PIL import Image | |
import face_recognition | |
import cv2 | |
import numpy as np | |
import csv | |
from datetime import datetime | |
import matplotlib.pyplot as plt | |
# from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks | |
# import pylab # this allows you to control figure size | |
# pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook | |
import io | |
import streamlit as st | |
import streamlit_webrtc as webrtc | |
app = Flask(__name__) | |
# @app.route("/") | |
# def index(): | |
# #return 'hello' | |
# return render_template("index.html") | |
#################################################### | |
# app = Flask(__name__) | |
# app.config['SECRET_KEY'] = 'secret!' | |
# socket = SocketIO(app,async_mode="eventlet") | |
# @socket.on("connect") | |
# def test_connect(): | |
# print("Connected") | |
# emit("my response", {"data": "Connected"}) | |
######################################################## | |
def attend(): | |
# Face recognition variables | |
known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"] | |
known_face_encodings = [] | |
# Load known face encodings | |
sir_image = face_recognition.load_image_file("photos/sir.jpeg") | |
sir_encoding = face_recognition.face_encodings(sir_image)[0] | |
vikas_image = face_recognition.load_image_file("photos/vikas.jpg") | |
vikas_encoding = face_recognition.face_encodings(vikas_image)[0] | |
lalit_image = face_recognition.load_image_file("photos/lalit.jpg") | |
lalit_encoding = face_recognition.face_encodings(lalit_image)[0] | |
jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg") | |
jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0] | |
maam_image = face_recognition.load_image_file("photos/maam.png") | |
maam_encoding = face_recognition.face_encodings(maam_image)[0] | |
known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding] | |
students = known_faces_names.copy() | |
face_locations = [] | |
face_encodings = [] | |
face_names = [] | |
now = datetime.now() | |
current_date = now.strftime("%Y-%m-%d") | |
csv_file = open(f"{current_date}.csv", "a+", newline="") | |
csv_writer = csv.writer(csv_file) | |
# Function to run face recognition | |
def run_face_recognition(): | |
video_capture = cv2.VideoCapture(0) | |
s = True | |
existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file | |
while s: | |
_, frame = video_capture.read() | |
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) | |
rgb_small_frame = small_frame[:, :, ::-1] | |
face_locations = face_recognition.face_locations(rgb_small_frame) | |
face_encodings = face_recognition.face_encodings(small_frame, face_locations) | |
face_names = [] | |
for face_encoding in face_encodings: | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "" | |
face_distance = face_recognition.face_distance(known_face_encodings, face_encoding) | |
best_match_index = np.argmin(face_distance) | |
if matches[best_match_index]: | |
name = known_faces_names[best_match_index] | |
face_names.append(name) | |
for name in face_names: | |
if name in known_faces_names and name in students and name not in existing_names: | |
students.remove(name) | |
print(students) | |
print(f"Attendance recorded for {name}") | |
current_time = now.strftime("%H-%M-%S") | |
csv_writer.writerow([name, current_time, "Present"]) | |
existing_names.add(name) # Add the name to the set of existing names | |
s = False # Set s to False to exit the loop after recording attendance | |
break # Break the loop once attendance has been recorded for a name | |
cv2.imshow("Attendance System", frame) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
video_capture.release() | |
cv2.destroyAllWindows() | |
csv_file.close() | |
# Call the function to run face recognition | |
run_face_recognition() | |
return redirect(url_for('show_table')) | |
def show_table(): | |
# Get the current date | |
current_date = datetime.now().strftime("%Y-%m-%d") | |
# Read the CSV file to get attendance data | |
attendance=[] | |
try: | |
with open(f"{current_date}.csv", newline="") as csv_file: | |
csv_reader = csv.reader(csv_file) | |
attendance = list(csv_reader) | |
except FileNotFoundError: | |
pass | |
# Render the table.html template and pass the attendance data | |
return render_template('attendance.html', attendance=attendance) | |
def home(): | |
return render_template('index.html') | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) | |