Spaces:
Runtime error
Runtime error
from flask import * | |
from PIL import Image | |
import face_recognition | |
import cv2 | |
import numpy as np | |
import csv | |
from datetime import datetime | |
############################################ | |
import matplotlib.pyplot as plt | |
import pylab # this allows you to control figure size | |
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook | |
import io | |
import streamlit as st | |
bytes_data=None | |
##################################################3 | |
import gradio as gr | |
app = Flask(__name__) | |
flag1 = True | |
def testme(): | |
global flag1 | |
# return "i am in testme" | |
while flag1 is True: | |
img_file_buffer=st.camera_input("Take a picture") | |
if img_file_buffer is not None: | |
test_image = Image.open(img_file_buffer) | |
st.image(test_image, use_column_width=True) | |
if bytes_data is None: | |
flag1 = False | |
st.stop() | |
# def attend(): | |
# # Face recognition variables | |
# known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"] | |
# known_face_encodings = [] | |
# # Load known face encodings | |
# sir_image = face_recognition.load_image_file("photos/sir.jpeg") | |
# sir_encoding = face_recognition.face_encodings(sir_image)[0] | |
# vikas_image = face_recognition.load_image_file("photos/vikas.jpg") | |
# vikas_encoding = face_recognition.face_encodings(vikas_image)[0] | |
# lalit_image = face_recognition.load_image_file("photos/lalit.jpg") | |
# lalit_encoding = face_recognition.face_encodings(lalit_image)[0] | |
# jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg") | |
# jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0] | |
# maam_image = face_recognition.load_image_file("photos/maam.png") | |
# maam_encoding = face_recognition.face_encodings(maam_image)[0] | |
# known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding] | |
# students = known_faces_names.copy() | |
# face_locations = [] | |
# face_encodings = [] | |
# face_names = [] | |
# now = datetime.now() | |
# current_date = now.strftime("%Y-%m-%d") | |
# csv_file = open(f"{current_date}.csv", "a+", newline="") | |
# csv_writer = csv.writer(csv_file) | |
# # Function to run face recognition | |
# def run_face_recognition(): | |
# video_capture = cv2.VideoCapture(0) | |
# s = True | |
# existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file | |
# while s: | |
# _, frame = video_capture.read() | |
# small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) | |
# rgb_small_frame = small_frame[:, :, ::-1] | |
# face_locations = face_recognition.face_locations(rgb_small_frame) | |
# face_encodings = face_recognition.face_encodings(small_frame, face_locations) | |
# face_names = [] | |
# for face_encoding in face_encodings: | |
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
# name = "" | |
# face_distance = face_recognition.face_distance(known_face_encodings, face_encoding) | |
# best_match_index = np.argmin(face_distance) | |
# if matches[best_match_index]: | |
# name = known_faces_names[best_match_index] | |
# face_names.append(name) | |
# for name in face_names: | |
# if name in known_faces_names and name in students and name not in existing_names: | |
# students.remove(name) | |
# print(students) | |
# print(f"Attendance recorded for {name}") | |
# current_time = now.strftime("%H-%M-%S") | |
# csv_writer.writerow([name, current_time, "Present"]) | |
# existing_names.add(name) # Add the name to the set of existing names | |
# s = False # Set s to False to exit the loop after recording attendance | |
# break # Break the loop once attendance has been recorded for a name | |
# cv2.imshow("Attendance System", frame) | |
# if cv2.waitKey(1) & 0xFF == ord('q'): | |
# break | |
# video_capture.release() | |
# cv2.destroyAllWindows() | |
# csv_file.close() | |
# # Call the function to run face recognition | |
# run_face_recognition() | |
# return redirect(url_for('show_table')) | |
########################################################################### | |
def show_table(): | |
# Get the current date | |
current_date = datetime.now().strftime("%Y-%m-%d") | |
# Read the CSV file to get attendance data | |
attendance=[] | |
try: | |
with open(f"{current_date}.csv", newline="") as csv_file: | |
csv_reader = csv.reader(csv_file) | |
attendance = list(csv_reader) | |
except FileNotFoundError: | |
pass | |
# Render the table.html template and pass the attendance data | |
return render_template('attendance.html', attendance=attendance) | |
def home(): | |
return render_template('index.html') | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) | |