File size: 878 Bytes
b215f2c
d396c6b
2b3d2ae
b215f2c
9184993
b215f2c
 
 
 
 
 
aa4c474
b215f2c
 
 
 
 
 
2b3d2ae
b215f2c
9184993
26236d1
b215f2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModel

app = Flask(__name__)

# Load model and tokenizer
try:
    tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', revision='cf6b7386bc89a54f09785612ba74cb12de6fa17c', trust_remote_code=True)
    model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', revision='cf6b7386bc89a54f09785612ba74cb12de6fa17c', trust_remote_code=True)
except Exception as e:
    print(f"Error loading model and tokenizer: {e}")

@app.route('/predict', methods=['POST'])
def predict():
    # Assuming you send image data in the request
    data = request.json
    # Add your model inference logic here
    # e.g., model.forward(data)

    return jsonify({"message": "Prediction made successfully!"})

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=5000)  # Adjust port if necessary