Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
-
# Check
|
7 |
if torch.cuda.is_available():
|
8 |
print("CUDA is available! GPU is present.")
|
9 |
-
print(f"Number of GPUs: {torch.cuda.device_count()}")
|
10 |
-
print(f"GPU Name: {torch.cuda.get_device_name(0)}")
|
11 |
else:
|
12 |
print("CUDA is not available. Running on CPU.")
|
13 |
|
14 |
# Load the tokenizer and model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
-
|
17 |
-
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
20 |
-
model = model.eval().cuda()
|
21 |
-
else:
|
22 |
-
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, pad_token_id=tokenizer.eos_token_id)
|
23 |
-
model = model.eval() # Keep model on CPU
|
24 |
|
25 |
# Define the OCR function
|
26 |
def perform_ocr(image):
|
@@ -28,8 +20,12 @@ def perform_ocr(image):
|
|
28 |
if image.mode != "RGB":
|
29 |
image = image.convert("RGB")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
# Perform OCR using the model
|
32 |
-
res = model.chat(tokenizer,
|
33 |
|
34 |
return res
|
35 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
|
6 |
+
# Check if CUDA is available
|
7 |
if torch.cuda.is_available():
|
8 |
print("CUDA is available! GPU is present.")
|
|
|
|
|
9 |
else:
|
10 |
print("CUDA is not available. Running on CPU.")
|
11 |
|
12 |
# Load the tokenizer and model
|
13 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
14 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
15 |
+
model = model.eval().cuda() if torch.cuda.is_available() else model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Define the OCR function
|
18 |
def perform_ocr(image):
|
|
|
20 |
if image.mode != "RGB":
|
21 |
image = image.convert("RGB")
|
22 |
|
23 |
+
# Save the image to a temporary file to pass to the model
|
24 |
+
temp_image_path = "temp_image.png"
|
25 |
+
image.save(temp_image_path)
|
26 |
+
|
27 |
# Perform OCR using the model
|
28 |
+
res = model.chat(tokenizer, temp_image_path, ocr_type='ocr')
|
29 |
|
30 |
return res
|
31 |
|