Spaces:
Runtime error
Runtime error
File size: 7,575 Bytes
1f6b1f0 0361dbf 1f6b1f0 a8f09fc 1f6b1f0 b90e071 1f6b1f0 0ddad88 b90e071 74f61e5 b90e071 74f61e5 1f6b1f0 0361dbf 1f6b1f0 b90e071 1f6b1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import torch
import base64
import textwrap
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import RetrievalQA
from streamlit_chat import message
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
import os
st.set_page_config(page_title="pdf-GPT", page_icon="π", layout="wide")
@st.cache_resource
def get_model():
device = torch.device('cpu')
# device = torch.device('cuda:0')
checkpoint = "LaMini-T5-738M"
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
device_map=device,
torch_dtype = torch.float32,
# offload_folder= "/model_ck"
)
return base_model,tokenizer
@st.cache_resource
def llm_pipeline():
base_model,tokenizer = get_model()
pipe = pipeline(
'text2text-generation',
model = base_model,
tokenizer=tokenizer,
max_length = 512,
do_sample = True,
temperature = 0.3,
top_p = 0.95,
# device=device
)
local_llm = HuggingFacePipeline(pipeline = pipe)
return local_llm
@st.cache_resource
def qa_llm():
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory="db", embedding_function = embeddings)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type = "stuff",
retriever = retriever,
return_source_documents=True
)
return qa
def process_answer(instruction):
response=''
instruction = instruction
qa = qa_llm()
generated_text = qa(instruction)
answer = generated_text['result']
return answer, generated_text
# Display conversation history using Streamlit messages
def display_conversation(history):
# st.write(history)
for i in range(len(history["generated"])):
message(history["past"][i] , is_user=True, key= str(i) + "_user")
if isinstance(history["generated"][i],str):
message(history["generated"][i] , key= str(i))
else:
message(history["generated"][i][0] , key= str(i))
# sources_list = []
# for source in history["generated"][i][1]['source_documents']:
# # st.write(source.metadata['source'])
# sources_list.append(source.metadata['source'])
# message(str(set(sources_list)) , key="sources_"+str(i))
# function to display the PDF of a given file
@st.cache_data
def displayPDF(file,file_name):
# Opening file from file path
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# Embedding PDF in HTML
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="900" type="application/pdf"></iframe>'
# pdf_display = f'<iframe src="{file}" width="700" height="900" type="application/pdf"></iframe>'
# st.write()
# pdf_display = f'<embed src="http://localhost:8900/{file_name}" width="700" height="1000" type="application/pdf"></embed>'
# pdf_display = f'<iframe src="http://localhost:8900/{file_name}" width="700" height="900" type="application/pdf"></iframe>'
# st.write(pdf_display)
st.markdown(pdf_display, unsafe_allow_html=True)
@st.cache_resource
def data_ingestion(file_path,persist_directory):
# for root, dirs, files in os.walk("docs"):
# for file in files:
if file_path.endswith(".pdf"):
print(file_path)
loader = PDFMinerLoader(file_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
texts = text_splitter.split_documents(documents)
# create embeddings
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# create vector store
db = Chroma.from_documents(texts, embeddings, persist_directory="uploaded/db")
db.persist()
db=None
def main():
st.markdown("<h1 style='text-align:center; color: blue;'>Chat with Your PDF π</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align:center; color: grey;'>Built by Vicky</h3>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align:center; color: red;'>Upload your PDF</h2>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("",type=["pdf"])
if uploaded_file is not None:
file_details = {
"name" : uploaded_file.name,
"type" : uploaded_file.type,
"size" : uploaded_file.size
}
print(os.getcwd())
# st.write(os.getcwd())
cwd = os.getcwd()
# st.write(os.listdir(cwd))
filepath = cwd+"/uploaded/"+uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
col1, col2 = st.columns([1,1])
with col1:
# st.markdown("<h2 style='text-align:center; color:grey;'>PDF Details</h2>",unsafe_allow_html=True)
# st.write(file_details)
st.markdown("<h2 style='text-align:center; color: grey;'>PDF Preview</h2>", unsafe_allow_html=True)
displayPDF(filepath,uploaded_file.name)
# displayPDF(uploaded_file)
with col2:
with st.spinner("Embeddings are in process......."):
ingested_data = data_ingestion(filepath,filepath)
st.success('Embeddings are created Successfully!')
st.markdown("<h2 style='text-align:center; color: grey;'>Chat Here</h2>", unsafe_allow_html=True)
user_input = st.text_input(label="Message",key="input")
# user_input = st.chat_input("",key="input")
# styl = f"""
# <style>
# .stTextInput {{
# position: fixed;
# bottom: 3rem;
# }}
# </style>
# """
# st.markdown(styl, unsafe_allow_html=True)
# Initialize session state for generated responses and past messages
if "generated" not in st.session_state:
st.session_state["generated"] = ["I am ready to help you"]
if "past" not in st.session_state:
st.session_state["past"] = ["Hey There!"]
# Search the database for a response based on user input and update session state
if user_input:
answer = process_answer({"query" : user_input})
# answer = user_input
st.session_state["past"].append(user_input)
response = answer
st.session_state["generated"].append(response)
# st.write(st.session_state)
# user_input = st.text_input(label="Message",key="input")
# Display Conversation history using Streamlit messages
if st.session_state["generated"]:
display_conversation(st.session_state)
if __name__ == "__main__":
main()
|