Spaces:
Sleeping
Sleeping
File size: 8,819 Bytes
6f84299 f3ce3fc 3313d78 f3ce3fc 3313d78 f3ce3fc b1fc424 f3ce3fc 23cab0e b1fc424 23cab0e b1fc424 23cab0e f3ce3fc 23cab0e f3ce3fc 3313d78 23cab0e 3313d78 b1fc424 3313d78 f3ce3fc 3313d78 f3ce3fc 3313d78 f3ce3fc b00b29e 23cab0e b00b29e 23cab0e b00b29e 23cab0e b1fc424 79277f6 847adf4 b1fc424 79277f6 b1fc424 847adf4 b1fc424 b1debd7 b1fc424 847adf4 b1fc424 b00b29e 23cab0e 79277f6 b1fc424 b00b29e 23cab0e b1fc424 79277f6 b1debd7 79277f6 f4a502f b00b29e 23cab0e b00b29e 23cab0e b00b29e 23cab0e b00b29e b1fc424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import streamlit as st
from ibm_watsonx_ai import APIClient
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes, DecodingMethods
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
import os
# Set up page configuration
st.set_page_config(page_title="ProductProse - AI Product Description Generator", layout="wide")
# Initialize session state to track API responses and user feedback
if 'generated_description' not in st.session_state:
st.session_state.generated_description = None
if 'translated_description' not in st.session_state:
st.session_state.translated_description = None
if 'customized_description' not in st.session_state:
st.session_state.customized_description = None
if 'feedback' not in st.session_state:
st.session_state.feedback = None
# Sidebar for product data input
st.sidebar.title("Product Data Input")
product_name = st.sidebar.text_input("Product Name", "Example Product")
features = st.sidebar.text_area("Product Features", "Feature 1, Feature 2, Feature 3")
benefits = st.sidebar.text_area("Product Benefits", "Benefit 1, Benefit 2, Benefit 3")
specifications = st.sidebar.text_area("Product Specifications", "Specification 1, Specification 2, Specification 3")
# Select target language for translation
target_language = st.sidebar.selectbox("Target Language for Translation", ["Arabic", "Chinese", "French", "German", "Japanese", "Portugese", "Russian", "Spanish", "Urdu"])
# Main app title and description
st.title("ProductProse - AI Product Description Generator")
st.markdown("""
Welcome to ProductProse, an AI-powered tool for generating and customizing product descriptions using IBM Granite LLMs.
Simply input your product data and let the AI do the rest, including generating descriptions, translating them into multiple languages, and customizing them to match your brand tone and style.
""")
# IBM WatsonX API Setup
project_id = os.getenv('WATSONX_PROJECT_ID')
api_key = os.getenv('WATSONX_API_KEY')
if api_key and project_id:
credentials = Credentials(url="https://us-south.ml.cloud.ibm.com", api_key=api_key)
client = APIClient(credentials)
client.set.default_project(project_id)
# Tone Selection for Description Customization
tone_example = st.sidebar.selectbox("Select Example Tone (Feel free to modify)", ["Formal", "Casual", "Professional", "Playful"])
st.sidebar.markdown("_Example: You can choose a tone that best fits your brand's style._")
# Keyword Input for SEO Optimization
seo_keywords_example = st.sidebar.text_area("SEO Keywords (comma-separated, e.g., 'smart home, automation')", "smart home, intelligent, automation")
st.sidebar.markdown("_Example: Add keywords to optimize for search engines._")
# Step 1: Generate Product Description
st.header("Step 1: Generate Product Description")
if st.button("Generate Description"):
if product_name and features and benefits and specifications:
# Prompt engineering for Granite-13B-Instruct
prompt = f"""
You are an AI that generates high-quality product descriptions. Based on the following details, generate a professional and engaging product description:\n
Product Name: {product_name}\n
Features: {features}\n
Benefits: {benefits}\n
Specifications: {specifications}\n
Generate only the final product description text, without including any instruction or prompt context.
"""
try:
model = ModelInference(model_id=ModelTypes.GRANITE_13B_INSTRUCT_V2, params={
GenParams.DECODING_METHOD: DecodingMethods.GREEDY,
GenParams.MIN_NEW_TOKENS: 50,
GenParams.MAX_NEW_TOKENS: 200,
GenParams.STOP_SEQUENCES: ["\n"]
}, credentials=credentials, project_id=project_id)
with st.spinner("Generating product description..."):
description_response = model.generate_text(prompt=prompt)
st.session_state.generated_description = description_response
st.session_state.translated_description = None # Clear previous translations
st.success("Product description generated!")
st.write(description_response)
except Exception as e:
st.error(f"An error occurred while generating the description: {e}")
else:
st.warning("Please fill in all the product data fields before generating a description.")
# Step 2: Translate Product Description
st.header("Step 2: Translate Product Description")
if st.session_state.generated_description:
if st.button("Translate Description"):
try:
# Translate the description using Granite-20B-Multilingual
prompt = f"Translate the following product description into {target_language}:\n{st.session_state.generated_description}"
model = ModelInference(model_id=ModelTypes.GRANITE_20B_MULTILINGUAL, params={
GenParams.DECODING_METHOD: DecodingMethods.GREEDY,
GenParams.MIN_NEW_TOKENS: 50,
GenParams.MAX_NEW_TOKENS: 200,
GenParams.STOP_SEQUENCES: ["\n"]
}, credentials=credentials, project_id=project_id)
with st.spinner(f"Translating product description to {target_language}..."):
translation_response = model.generate_text(prompt=prompt)
st.session_state.translated_description = translation_response
st.success(f"Product description translated to {target_language}!")
st.write(translation_response)
except Exception as e:
st.error(f"An error occurred while translating the description: {e}")
# Display previous results
if st.session_state.generated_description:
st.subheader("Generated Product Description")
st.write(st.session_state.generated_description)
if st.session_state.translated_description:
st.subheader(f"Translated Product Description ({target_language})")
st.write(st.session_state.translated_description)
# Step 3: Customize Product Description via Chat Interface
st.header("Step 3: Customize Product Description")
customization_prompt = st.text_input("Customize the product description (Feel free to modify the example tone and SEO keywords)")
if st.session_state.generated_description and customization_prompt:
if st.button("Customize Description"):
try:
# Customize the description using Granite-13B-Chat
prompt = f"Customize the following product description with a {tone_example} tone, using the following SEO keywords: {seo_keywords_example}.\nProduct Description:\n{st.session_state.generated_description}\nCustomization Request: {customization_prompt}\nGenerate only the final customized product description."
model = ModelInference(model_id=ModelTypes.GRANITE_13B_CHAT_V2, params={
GenParams.DECODING_METHOD: DecodingMethods.GREEDY,
GenParams.MIN_NEW_TOKENS: 50,
GenParams.MAX_NEW_TOKENS: 200,
GenParams.STOP_SEQUENCES: ["\n"]
}, credentials=credentials, project_id=project_id)
with st.spinner("Customizing product description..."):
customization_response = model.generate_text(prompt=prompt)
st.session_state.customized_description = customization_response
st.success("Product description customized!")
st.write(customization_response)
except Exception as e:
st.error(f"An error occurred while customizing the description: {e}")
# Display customized result if available
if st.session_state.customized_description:
st.subheader("Customized Product Description")
st.write(st.session_state.customized_description)
# Step 4: Feedback and Quality Scoring
st.header("Step 4: Provide Feedback")
feedback = st.slider("Rate the quality of the generated product description (1 = Poor, 5 = Excellent)", 1, 5, 3)
feedback_comments = st.text_area("Additional Comments")
if st.button("Submit Feedback"):
st.session_state.feedback = {"rating": feedback, "comments": feedback_comments}
st.success("Thank you for your feedback!")
st.write(st.session_state.feedback)
else:
st.error("IBM WatsonX API credentials are not set. Please check your environment variables.") |