Spaces:
Runtime error
Runtime error
File size: 4,440 Bytes
133f66a a5fed7d 133f66a cbad06d 133f66a cbad06d a5fed7d cbad06d 133f66a cbad06d a5fed7d cbad06d a5fed7d cbad06d a5fed7d 133f66a a5fed7d cbad06d 133f66a a5fed7d cbad06d a5fed7d cbad06d a5fed7d cbad06d a5fed7d 133f66a cbad06d a5fed7d 133f66a a5fed7d cbad06d a5fed7d 133f66a a5fed7d cbad06d a5fed7d cbad06d a5fed7d cbad06d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and processor
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cpu" else None # Automatically maps to CPU if no GPU
).to(device)
# Inference function
def model_inference(
input_dict, history, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
text = input_dict["text"]
if len(input_dict["files"]) > 1:
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
images = [Image.open(input_dict["files"][0]).convert("RGB")]
else:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in ["Greedy", "Top P Sampling"]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
# Stream generation
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
thread.join()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
# Gradio interface
demo = gr.ChatInterface(
fn=model_inference,
title="Geoscience AI Interpreter",
description=(
"This app interprets thin sections, seismic images, etc. "
"Upload an image and a text query. Works best with single-turn conversations. "
"Clear the conversation after a single turn."
),
textbox=gr.MultimodalTextbox(
label="Query Input", file_types=["image"], file_count="multiple"
),
stop_btn="Stop Generation",
multimodal=True,
additional_inputs=[
gr.Radio(
["Top P Sampling", "Greedy"],
value="Greedy",
label="Decoding strategy",
info="Higher values are equivalent to sampling more low-probability tokens.",
),
gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values produce more diverse outputs.",
),
gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
),
gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty.",
),
gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values are equivalent to sampling more low-probability tokens.",
),
],
cache_examples=False,
)
# Launch Gradio app
demo.launch(debug=True)
|